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. The presence of “slow" and "fast™ dynamics in large scale systems

has motivated the use of singular perturbations as a means of obtaining -

’t,r/ Liviot

reduced order models for analysis and control law design. In this thesis we™

T3n-

establish how systems having thié\”two-time—scale property can use singular
pertufbation modeling to make this property explicit enabling various
reduced order analysis and design techniques to bhe applied. For deterministic
linear time—invatiapt systems, various techniques for obtaining reduced order
models are unified through left and right eigenspace decompositions. A
general two stage control d- - _gn procedure for separate fast and slow sub-
systems is developed which can be applied to both continuous and discreter\
time models. Finally, Markov chain models of stochastic systems witﬁf"WeQE"
> ;

and "strong" transition probabilities lead to a singularly perturbed model
. e 1 N

2 -

from which we obtain the concept of the reduced ordef\"aggregaée" chain.

¢ 7

For controlled Markov chains the aggregate model is used to develop decen-

tralized optimization algorithms for the discounted and average cost per

stage problems.
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[ a : CHAPTER 1
INTRODUCTION

The analysis and control of large scale systems has always been a

3

challenging problem to control engineers. The large dimension of the system
model and the rich interactions make conventional simulation and design’
algorithms impractical if not impossible to use. The research direction in
this area has centered on obtaining reduced order models from large scale models
without sacrificing significant accuracy. These reduced order models are
usually comstructed inone of two ways. First, within a large scale model,
several smaller subsystems are identified by their weak couplings to the
remainder of the system. These reduced order subsystems are treated
separately for simulation and design purposes with interactions between sub-
systems taken care of separately [1,2]. Second, the entire large scale model
is approximated by one reduced order model where the dynamics of the reduced
order model are determined by the "dominant" dynamics of the large scale

model [3,4]). Over the years, many names have been given to various methods

of order reduction. Of these methods aggregation and singular perturbations

seem to be the most well known [5]. The analysis and design of singularly

Y Iy

perturbed systems has been well documented [6,7,8]. The multiple-time-scale

property of these systems has been used in developing reduced order models

- v

and control laws for high order "stiff'" models. This thesis further contri-

v -

butes to the theory of multiple-~-time-scale systems and how they can be used
as a powerful order reduction technique for both the analysis and design of

large scale systems.
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In Chapter 2 we consider the linear time-invariant system .
&(E) o ax(t) + Bu(e) (1.1)
where x(t)€&?, u(t) eRP, and {aij}’ {bij}eR Vi,j. Many seemingly unrelated

iterative techniques [9-12] have been proposed for transforming (1.1) into

y A* 0 y E*
= + u (1.2)
W 0 D* ||w F*
where yeRn, weRm, and
_ min lxi(A*)l < max lxj(n*)l (1.3)
i=1,...,n i=1,...,m

(in (1.3), Ai(z) is the ith eigenvalue of the matrix Z). When such a trans-
formation is possible, (1.1l) is said to have a "two-time-scale property."
These spectrum separation techniques can then be used for reduced order
modeling and design. Unfortunately, the convergence results of these iterative
techniques are either heuristic or conservative {10,12]. 1In this chapter we
unify and extend the results of time scale decomposition techniques to form
a composite theory from which all previous methods can be derived as variations
to the basic results.

In Chapter 3 we consider the time scale decomposition of singularly

perturbed systems. For this problem (1.1) takes the form

= + u (1.4)

as Sam




e L

v v oew

where xle Rn, xze Rm, and O<p<<1l. 1In this case, the singular perturbation

parameter u explicitly defines the presence of a two-time-scale phenomena.
Using this parameter, two~time-scale asymptotic expansions [8,13] of the
state vector can be used to obtain a reduced order solution to (1;4). ‘n this .
chapter we show the relationship between the "spectrum separating” it tive
;echniques of Chapter 2 and matched asymptotic expansions used for si larly
perturbed models. The results of these two chapters establish a unif. . theory
of time scale decompositions in linear time-invariant systems. In the remainder
of this thesis we consider a class of stochastic systems in which the results
from both singular perturbations and aggregation techniques are applied.

Markov chains and Markovian decision processes have long been used
in the analysis and design of stochastic systems [14,15]. Some of the
application areas of Markov modeling included the following:

i. Numerical solutions to stochastic control problems [16]
ii. 1Inventory theory (17]

1ii. Queuing theory [18].
Markovian decision processes can be traced back to Bellman's development of
Dynamic Programming {[19,20] where many of the Markov chain control problems
were formulated. Since this time, many design algorithms for a variety of
controlled Markov chain problems have been developed. The theoretical richness
of this area has kept it popular with researchers. However, the practical
usefulness of Markov models and Markovian decision processes has been
severely limited due to the extremely large dimension of most Markov chains.
The computational burden of these problems has discouraged svstems engineers
from using Markov chains for modeling purposes. Recent applications in

queueing theory [21] and the management of hvdrodams [22] have exhibited

Ao x o PP DU N |
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Markov chain models with a 'weakly coupled" structure suitable for perturba-
tional analysis. In recent years, authors [23-25] have used this structure
to construct reduced order aggregate models for large Markov chains. Since
the aggregate models were developed using an intuitive understanding of the
process dynamics, the results were limited and a more complete theory needed
in order for this concept to become useful for anmalysis and design. Therefore,
in Chapter 4 we show how a weakly coupled Markov chain can be transformed into
a singularly perturbed system model. Then, the decomposition techniques of
Chapters 2 and 3 can readily be applied.

In Chapters 5 and 6 we consider the problem of optimally controlling
Markov chains with respect to certain performance measurements. In general,
these problems are computationally horrendous. Howaver, by applying the
results of Chapter 4, a near optimal policy can be found using a simplified
decentralized optimization algorithm. In Chapter 5 we consider the discounted
cost problem [15] and in Chapter 6 the average cost per stage problem [15].

Finally, in Chapter 7 we draw conclusions and point to a number of

research directions to which this thesis leads.
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CHAPTER 2

EIGENSTRUCTURE DECOMPOSITION OF TIME SCALES
IN LINEAR-TIME INVARIANT SYSTEMS

2.1. Introduction

Many control theory concepts are valid for any system order,
however, their actual use ;a limited to low order models. Large scale
systems result not only in a formidable amount of computation, but also in
ill-conditioned initial and two point boundary value problems. The inter-
action of fast and slow phenomena in high-order systems results in stiff
numerical problems which require expensive integration routines. The singular
perturbations approach to decomposing fast and slow phenomena involves using
a time-scale separation technique. In this case a reduced order 'steady
state" and "boundary layer" solutions are obtained from a high order model.
Control designs and simulations for the high order model are then carried out
on the reduced order subsystems.

It is the purpose of this chapter to unify and extend the results
of previous authors [6~12] and attempt to provide a sense of completeness to
the theory of time-scale separation in linear systems. Given the linear time

invariant homogeneous system

<
>

Bily y(to) =Y, 2.1
- .1
z z(to) = zo

Ne
(@]
o

yeRn, zeRm

our purpose is to transform it into either

L A a e mla P -
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or
gl |a* o [l
- (2.3)
z c D* ||z
such that
min [o(D )| > max|o(A)| (2.4)
or
min [o(D¥)| > max |o(aM)]. (2.5)

Any system (2.1) which has this property is said to satisfy the two-time-
scale property for dimensions n and m.

In Section 2.2 earlier methods of time-scale decomposition used to
transform (2.1) into (2.2) ;nd (2.3) are briefly reviewed. Then using a
modified form of dominant left and right eigenspace power iterations the
equivalence of these past iterative schemes is established. This enables us
to define unified conditions for convergence of algorithms as well as the

convergence rates.

Section 2.3 completes the block diagomalizations of (2.2) and (2.3)
and identifies "fast" and "slow" components of our original state vectors. |

§ The explicit invertibility of the transformation matrices is shown. This

becomes very important in later chapters.

In Section 2.4 we consider the problem or properly ordering the j

{ state variables. A recently developed 'grouping algorithm'" [34] used for
power networks is shown to be directly applicable.
Finally, in Section 2.5, an example is given of the eigenspace

decompositions.
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2.2. Left and Right Eigenspace Decomposition
In the first part of this section we briefly review two well known

iterative methods for transforming (2.1) into (2.2) 25"52.3). We then intro-

duce the dominant left and right eigenspace power iterations. Using modified
versions of these iterations, it is possible to show the equivalence of the
earlier methods. Less conservative conditions for the convergence of

algorithms as well as convergence rates are also obtained.

i) Quasi steady state method [6]

This method was motivated by singularly perturbed models. Assume
that the states are ordered such that D.1 exists. This assumption is
standard in studies of singularly perturbed systems. However, as will be
presented later, this assumption can be justified.

If the eigenvalues of D are such that the real parts are large and
negative, then the homogeneous solution of z converges to a steady-state
rapidly. If this convergence is assumed to be instantaneous, then Z=0 and
this quasi steady state assumption yields

-1
z = -D Cys. (2.6)

Next we try to remove this slow part of z by introducing

ny =z p~lex (2.7)

which transforms (2.1) into

. A DI e N P I A
A P S T T R TR R Sr ol . U R e N B - N A R I e R PR




el e a0 o0 o
[ ]

7 (a-p"1¢) B y
iy plca-plcy Dp+plce ny
& D™

Repeating steps (2.6) and (2.7) k times results in the following

-1
Me = M1 ¥ Dpc1Ge-1? Ny ™2

¥ A, B y

"l 1%  Dk)|™
where the subsystem matrices are defined as
- - BD_ A=A
A " Am17 B0 G A

-1
C ™ Dpm1%-1% Co=C

-1
D, = Dy _; +D,_;C, B

k = Dk-1 D, = D.

(2.8)

(2.9)

- (2.10)

(2.11)

(2.12)

(2.13)

Experimental results, motivated by singular perturbations, have

converged to the form (2.2) satisfying spectral property (2.4).

The dual to this procedure involves removing the fast parts of the

vy states. Such a procedure would transform (2.1) into (2.3) satisfying

condition (2.5). [12] proposed this dual procedure which led to matrix

recursions
A ™ A1 Bk—lnlilc A=A
Be = A 1De B,=B
D ™ D1 * CBk-l"lil Do ™D

(2.14)

(2.15)

(2.16)




...................................

Again, while experimental results have proved successful, conditions. for.. - . . ..

- convergence as well as convergence rates are unavailable.

Aii) Algebraic Riccati equation method [10] .

In [10, 11, 26,27], the transformation of the form
n=2z+Py (2.17)

is proposed in an attempt to transform (2.1) into (2.2). By applying (2.17)

to (2.1), we obtain

y A-BP B y
= . ( 2 . 18)
n C-DP + PA-PBP D+PB{in

The problem is to find the solution P to the Riccati type equatiom

R(P) = C-DP+PA~PBP = 0 (2.19)

such that A-BP and D+PB have the spectral properties (2.4). Such spectrum
dependent solutions have been referred to as "dichotomic" [28]. We will
throughout the rest of this thesis continue to refer to this solution by

this label.

Earlier work by [10] and more recent work by [9] have resulted in
the following iterative recursion formula for obtaining the dichotomic

solution to (2.19)

-1
Pk+1 = Pk + (D*-PkB) -R(Pk) (2.20)
- P =D ¢ |
) 4 ° |
: which gives the subsvstem matrices in (2.2) at each k as
E. .
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10
A = A-BP_, A=A < (2.21)
D, =D+P__,B D,=D - - (2.22)
¢ = R(P_,) =C-DP_,+P ,A-P_,BP . C =C. g .(2.23)-

Likewise, [11,35] have proposed the dual to the Riccati method via the trans-

formation
£=y-Pz (2.24)

which transforms (2.2) into

A-Pc  AP+B-BCP-PD || £
- A . (2.25)
C D+ CP z

e

'
Ne

The problem is again to obtain the dichotomic solution ﬁ to the Riccati type
equation

S(P) = AP + B~ PCP-PD = 0 (2.26)

such that Apﬁc and D+C§ have spectral properties (1.5). From [11,36] the

following iterative scheme was derived for obtaining the dichotomic solution

to (2.26)
A - ~ ~ -l .
Peey = By + S(R(D+CP) (2.27)
A -1
Po = BD (2.28)
which leads to the matrix equations for (2.3) as
A =A-B_cC A=A (2.29)
D, = D+CP__, D =D (2.30)
B = S(P, ) = B =P D+AP, _,-P _,CP _, B,=B. (2.31)

i d
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; ‘! , While some convergence results are available [9,10] for the matrix recursion
E v (2.27), they are either conservative or limited to solving only (2.26). We:
; : now unify and extend these results by showing that these iterative techniques
l . are equivalent to either dominant right or left eigensp;ce power iteratioﬁs. .-
| We now give a lemma which establishes a convergence criterion for
(2.27) based on dominant left eigenspace power iterations. In the process,
E - we shall show that (2.11)-(2.13) and (2.21)-(2.23) are equivalent at évery
E a iterate.
: Lemma 2.1: Given (2.1), if the spectrum is concentrated in two groups of m
such n eigenvalues such that
| maxlkil < minllj|. (2.32)
‘ i=1.,n j=1l,m
Then under mild restrictions [29] on the initial iterate Po, (2.27) will
converge to the dichotomic solution of (2.26) at a convergence rate of ek,
- where
max| A j_| iel,n
€ =mw jel,m ° (2.33)

Proof: The well known power iteratiom method [30,31] for computing a m-

dimensional basis for the dominant left eigenspace of (2.1) is of the form

A B
M, NI =R, Nl [ ] (2.34)

C D

R'k is a nonsingular mxm scaling matrix used, for example, to keep
the rows of [Mk Nk] strongly independent and the individual components

within a practical range of computation [31]. Many methods have been proposed

[P P . - A . At e ae Ya e A A M e o4 A=
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for selecting the sequence of Rk's and the interested reader is referred to

- [29] and [31]. The analytical convergence of (2.34), however, is indepen-

: dent of Rk. Thus, under condition (2.32) and mild conditions on [Mo NOJ, it is
!l ’ known that (2.34) converges to the dominant m-dimensional left eigenspace of
(2.1).

Expressing the common iterates as

B M =M _A+N _C M =C (2.3s)
3

- -1 -1 -1.-1 -1, -1

3 N e el mThl o e (2.36)
e

We can form the product

- -1 -1, .l
N, = NI M BTHCHN e A). (2.37)

Letting Pk-NI:]Mk gives (2.37) as

. -1 RS
P = (D+P _ B) (C+P, _.A) P =D C (2.38)

which is equivalent to (2.27) Vkz 0.

To show the solution is dichotomic, P is of the form

—PT Y YN T

p =N Iy (2.39)
Without loss of generality we can take [M N]= [Vl VZ] where
;. [Vl V2] are the m left eigenvectors corresponding to the m dominant eigen-
- values, thus
¢
b
3 —1
. P=V 2"V
; o 21

and,

vy
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or, .
VlA + V2C = .HVI
VlB + VZD = szz.
However, from (1.16)
- - -1 -
C + Vzlle = szlvl + V2 VlBVZIVl

which leaves both (2.41) and (2.42) in the form

- -1
V,(D+ v‘.,_]'vlls)v2 3,

13

(2.40)

(2.41)

(2.42)

(2.43)

verifying the desired spectral decomposition we can now show the equivalence

of (2.11)-(2.13) and (2.21)-~(2.23).

Corollary 2.2: The matrix iterations (2.11)-(2.13) and (2.21)-(2.23) are

equivalent at every k. Thus, the just provided convergence properties of

(2.21)-(2.23) are propagated to (2.11)-(2.13).

Proof: Substitution of (2.20) into (2.21)-(2.23) results in

-1

A-BP__, = A-BP_, -B(D+P _,B) "-R(P,__,)
D+P _,B = D+P_ B+ (D+Pk_28)'1-R(Pk_2) ‘B
C, = R(B,_,) = (D+P,_,B)""-R(P,_,)-(A<BP, ).
Letting
a = A- BPk_l
Y = D+ Pk-lB
% * Ck

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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(2.47)-(2.49) become
-1

a = ak-l-BYk-lak-l ao-A (2.50)
Y. =y +ylo B Yy =D (2.51)
k k-1 ‘k-1"k-1 o : -
c -y-lc ' g =C (2.52)
ko Tk-1%-1% o .

which are equivalent to (2.11)-(2.13) Vk20.

We now cite a lemma [9] which is the dual to Lemma 2.1 and
establishes the conditions of convergence of (2.27) based on dominant right
eigenspace power iterations.

Lemma 2.3: If the spectrum of (2.1) satisfies (2.32), then under mild
restrictions on §° [9], (2.27) will converge to the dichotomic solution at a
convergence raté of sk where e is defined in (2.33).

Proof: The well known power iteration method [29,30] for computing an M

dimensional basis for the dominant right eigenspace of (2.1) is of the form

5] [ *][%a], %t

= R, (2.53)
N C DJ|N N =D

k k-1 o

where the scaling matrix Rk serves the same purpose as explained in Lemma 2.1.
Thus, under mild restrictions on [NO , 1s is well known that (2.53) con-

o |-
verges to the dominant m-dimensional right eigenspace of (2.1).

Expressing (2.53) as

Mo =AM, *BEN M,=B

-1 -1 -1 -1
Moo= N (e N ) N =D




* 4
r. - -
'r.' O i 15
. form the product
-1 -1 -1 ,-1 ’ ’
Hka (B+ Ank-lnk—l) (D+ cuk-lnk-l) . (2.54)
Letting ’
- “-1 -
P "M
- - a -1 . .
Pt1 ™ (1} + APk) (D+ crk) (2.55)
a -1
P = BD (2.56)
o R

S -

which is equivalent to (2.27) Vk20. Proving P is dichotomic is carried out

as in Lemma 2.1 and can be seen in [9,36].

vy

Finally, we can show the equivalence of (2.14)-(2.16) and (2.29)-

L a4

f (2.31).
|\
A Corollary 2.4: The matrix recursions (2.14)-(2.16) and (2.29)-(2.31) are
{ ' equivalent at every k, thus, the convergence properties of (2.55) are pro-
ﬁ . pagated to (2.14)-(2.16).
‘ Proof: Substitution of (2.27) into (2.29)-(2.31) gives
y -1
i A-B C = A= B ,C-S(R_)(D+CR ) ¢ (2.57)
) -1
: D+CP_, = D+CP,_,+CS(P,_,)(D+CP, ) (2.58)
. - -1
E Bk S(Pk-l) (A—Pk_lc)S(Pk_z) (D+ CPk-Z) . (2.59)
1 Letting
!
!
: a = A-P _.C (2.60)
Y, = D+CP_, (2.61)
{ Ek = Bk (2.62)

P S . - — = A e A m— - - Y S
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1

% " %1 Bee1 i1 % =4 (2.63)
Y, = v, ,+CB .y X Y =D (2.64)
k" V-1t OB 1k o .
B a8 Ly L 8 =B (2.65)
kT *k k-1Tk-1 o .

which are equivalent to (2.14)-(2.16).

Thus, the dominant left and right eigenspace iterations of (2.38)
and (2.55) can be used to transform (2.1) into (2.2) and (2.3) respectively,
requiring only that there exists a corresponding separation in the original
spectrum. In the next section (2.2) and (2.3) are block diagonalized so as

to isolate the fast and slow dynamics of (2.1).

2.3. Block Diagonalization and Identification of Fast and Slow State

Vector Components

Once we have transformed (2.1) into (2.2) or (2.3) satisfying
conditions (2.4) or (2.5) respectively, block diagonalization is always
possible.

Consider form (2.2), and the transformation (2.17) used to obtain

this form. The dichotomic solution matrix P is of the form
P = N Iy
where the rows of [M N] span the dominant left eigenspace of (2.1). Thus,

the exact form of (2.2) is

¥ A-BP B y
- . (2.66)
w 0 D+PB||lw




Yow, let x=y-Qw. This leaves (2.55) in the form

x A-BP (A-BP)Q-Q(D+PB) +B J [x ]
w o} D+PB w ]

Thus, we seek Q to satisfy the Lyapunov type equation
(A-BP)Q~- Q(D+PB)+B = 0
Such a Q will always exist since

G(A-BP)NI(D+PB) =9

17

(2.67)

(2.68)

(2.69)

(2.68) may be solved algebraically [32] or iteratively (10]. One obvious

iterative scheme is to apply the dominant right eigenspace iterations used

for transforming (2.1) into (2.3). Since (2.66) satisfies (2.32) convergence

is assured. Such an iteration would take the form
-1
Qk+1 =B+ @A - BP)Qk) (D +PB)
Q°=0

whichever method used, the resulting system is of the form

i-:‘c- A -BP 0 x
[_V'v | o D+PB {|lw

and the composite transformation is

v [t Q ¥
| |

L2 -P I-RQ ;

- - -

which possesses the explicit inverse

(2.70)

(2.71)
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= (2.72)

Thus, we have decomposed the y and z state vectors into their respective

"fast'" and "slow'" components. Namely
y-x+Qw=y31°w+yfasc (2.73)
;! z='-P:b”'(I“PQ)W”zsl.c;wi-zfast: (2.74)
where
x(e) =e® TP x = @-apy, -0z,
w(t) ae(D+PB)two w°=Pyo+zo

Such decompositions will become more important when we consider singularly

perturbed systems in the next chapter. There, the fast and slow components

g 4

i BRESE

take on the names of '"boundary layer" and ''steady state components”.
Now consider form (2.3) and the transformation (2.24) used to obtain

this form. The dichotomic solution matrix ‘I" is of the form

3 a1
! P=MN (2.75)
b
E. Where the columns of [g] span the dominant right eigenspace of
; (2.1). Thus, the exact form of (2.3) is
9
L #| |a-Ec 0 x-!
. = A .; (2.76)
; z c D+CP ||z
I .
‘ Now, let w=2z+Qx. This transforms (2.76) into the form
e %] ' a-BC 0 _"x
t = . ) .. . (2.77)
L":’ LQ(A-PC)-(D+CP)Q+C D+CPJ w
:
b
[ o

L
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Thus we seek 6 to satisfy the Lyapunov type equation

3
QA -BC) - (D+CP)Q+C =0 (2.78)
such a Q will always exist since
G(A - PC)N o(D +CP) = ¢ (2.79)

Again, (2.78) may be solved iteratively or algebraically. Applying the
dominant left eigenspace iterations to (2-76) convergence is assured. This

iteration takes the form

- A =1 - A o
Qsp = (+CP) "+ (C+Q"(A-EC)) Q=D C (2.80)
The resulting system is of the form -
% A-BC 0 y
= . (2.81)
&J 0 D+CP z
and the composite transformation is
X I -2 ||y
= | B (2.82)
w Q I-QP 2

with also possesses the explicit inverse

y I -%6 ﬁ X
= R (2.83)
|z -Q I w

-

Thus, we have again decomposed the y and z state vectors into

"fast" and "slow" components. Namely

= -.‘ D =A y 2
v=(I-P)x+bPw Ys1ow ™ Yiast (2.84)

L e : Lo
z Qx +w zslow-ﬁ“fasc (2.83)
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where .
ol =-PC) v <P
x(t) =e X, X, =Y, on
. .(D+CP) ol _o3
w(t) =e LA LA Qy°-+(I QP)z°

The relationships between various fast and slow components of (2.1) will be

an important topic of the next chapter.

2.4. Ordering of State Variables

In the results of the previous two sections it was always assumed
that there existed an ordering cf states such that Dfl existed as well as
N-l in (2.39) and (2.54). While {37] guarantees the existence of such an
ordering, yntil recently no ;ystematic algorithm . was available to achieve
this ordering of states. [34] has developed a 'grouping' algorithm for
the area decomposition of power networks. By applying this algorithm to
the left or right dominant eigenspace of (2.1) the necessary ordering of
states can be obtained.

Let F be the system matrix in (2.1) and let V correspond to the
matrix of right eigenvectors. Thus, F=-VAV-1 where A 1is the eigenvalue

matrix. If x=Fx, and we let x=Vy, then

x(t) = ve'ty(0). (2.86)

Partition V as V= Ulff VS] where Vf and Vs are the right eigenvectors
corresponding to the fast and slow spectrum respectivelv. Each row i of

V. "weighs'" the contribution of the fast modes to state x,. If V. has n

£ i £

columns, we want the m rows of V. that are the most linearlv independent

£

to correspond to our fast scates. This can be done bv performing a Gaussian

‘a_ala

RS NN



- T .- - T W T w T TTYTw T W e
L e e w w e w T  w LY e T Y L T T s e T T TR T T e TR T P - Te T T T
E T T T T T T L ]

b of S ialte |

O

’ 21
3 Il elimination with complete pivoting [34] on the rows of Vf. If we call Vi
. ] the m most linearly independent rows of Vf and permute the states such that
P n v, - _v_%_ ) (2.87)
+ v
¥ f
q Then since va-vfxf, we obtain i
S
. D+ c(vl(vz) - v A (vf) (2.88)
-
k. o where Af is the dominant eigenvalue matrix of dimension m. By this
b
- construction, V§==N in (2.54) and the proof of dominant right eigenspace
) iterations follows.
%)
Now partition V.l as {w§i where wf and WS are the left eigen-
£

vectors corresponding to the fast and slow spectrums of F respectively.

Again, since W_ has m rows, we want the m columns of W_. that are the most

£ £

linearly independent to correspond to our fast states. This again can be

done using Gaussian elimination. If we call wi the m most linearly indepen-

dent columns of Wf and permute the states such that

. 2
W [wt D Wil (2.89)
Then since WfF= Afwf, we obtain
, 2.-1.1 - 2,-1, .2 n
D+ (Wt) WEB (w ) \EJE. (2.90)

1 Thus, N—l will exist in (2.37) and the proof for the dominant left eigenspace

iterations follows.

v
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]x Thus, depending on whether you want to transform (2.1) into (2.2)
or (2.3), the ordering of states can possibly be different using the above

methods. However, in general, the state orderings resulting from these

F! methods are not the only such orderings which possess the desired properties.

i
Iy
I,
Y
y
|

In many cases a given ordering of states will satisfy the conditions necessary
for the application of both left and right eigenspace iteration. The
application of the 'grouping' algorithm merely assures us that there exists
orderings of states which satisfy the conditions assumed in the lemmas. 1In
many cases, such as singularly perturbed models, the proper ordering of

states can be done by inspection.

2.5. Example - Decomposition of States into Fast and Slow Components

In [39], the 8th order model of an isolated mixed power svstem is

given as
-.2 0 0 o 0 0 0 o
4,75 -5 0 0 0 0 0 0
0 .16667 -.16667 0 G 0 0 0
X = 0 0 2 -2 0 0 0 0 %
i
0 -.08 -.07467 -.112  -3.9944 10 -.92778 -9.1
b 0 0 G 0 .2 -.5 0 0
I
o 0 0 0 0 9] 0 -1.39 -.278
i 0 .01 .0093 .0l4  -.06319 0 .11597 -.112361
}. —
[ (2.91)
[
b
r
i
1




using a permutation of x=Py

gives

-.2 0 0

0 -.167 0

.0 0 -.5

g = ; 0 .009 0
0 -.075 10.0

0 2.00 0

0 0 0

4,75 0 0

P= (el,e3,36,es,es,e4,e7,e2)

0
0

-.112
0 -9.101

-.277
0

The eigenvalues of (2.92) are

For n =m=4,

eigenspace iterations we
r -0.20000

]
A -POB - l 0.15834
-0.00312
0.00877

which has eigenvalues

-1.3884147
-0.1291288
-0.1291288
-4,3489879
-2.0000000
-0.1666700
-5.0000000
-0.2000000

we obtain an

obtain

~ 0.00000
-0.16667
-0.00766

0.02153

23
0 0 0 0o
0 0 ] .167
.2 0 0 0
-.063 .014 .116 o1 y
-3.996 -.112 -.927 -.08
0 -2.00 0 0
1.319 0. -1.386 0
0 0 0 -5.00
(2.92)
+ 0.0000000J
+ 0.21247953
- 0.2124795J
+ 0.0000000J (2.93)
+ 0.0000000J
- 0.0000000J
+ 0.0000000J
+ 0.0000000J
¢ of .1792, Using the dominant left
0.00000  0.00000 '
-0.08981 -0.36571§
0.09635  -0.22145 |

d




D+BP_ =
o

T T Te T T T (T T T

-4.52014
0.00000
0.80733

| 0.00000

which has eigenvalues

using the dominant right

-0.20000
0.15834
-0.00312
| 0.00877

which has eigenvalues

L]

D+P C =
o

-4.31691
0.00000
| 1.32208
L 0.00000

-0.15563
-0.15563
°0 . 16667

0.175793
0.17579J
0.00000J

-0.20000 + 0.00000J

-0.08640 -0.71572 -0.05533
-2,00000 0.00000 -0.16667
0.02712 -1.16426 0.02543
0.00000 0.00000 ~5.00000

-4.33808 + 0.00000J

-1.34632 + 0.00000J

-2.00000 + 0.00000J

-5.00000 + 0.00000J

eigenspace iterations we get

0.00000 0.00000 0.00000
-0.16667 0.00000 0.00000
-0.00766  -0.0898L  -0.36571

0.02153 0.09635  -0.22145 |

-0.15563 + 0.17579J

-0.15563 = 0.17579J

-0.16667 + 0.00000J

-0.20000 + 0.00000J
-0.03023 0.04757  -0.05415
-2.00000 0.00000  -0.06667
0.00179  -1.36749 0.00051
0.00000 0.00000  -5.00000 _

‘‘‘‘‘‘‘‘‘‘‘‘‘
.........................
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(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

2ol _2.Ta’a _—id.

aalad

[T
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Which has eigenvalues

-4.33808 + 0.00000J
-1.34632 + 0.00000J (2.101)
-2.00000 + 0.00000J
-5.00000 + 0.00000J

To show how this accuracy may be improved, after two iterations we obtain

B tec)

CRNS 2 Bk e e & adiald

R £

it St

A-P.B=a

-0.20000
0.16492
-0.00233
| 0.00979

with eigenvalues

D+Bﬁ_’

-4.52468
0.00000
0.76779

| 0.00000

with eigenvalues

A‘CPl =

-0.20000
0.18379

i -0.00287
L 0.00821

0.00000
-0.16667
-0.00741

0.02836

0.00000
0.00000
-0.08420
0.13210

-0.13027
-0.13027
-0.16667
-0.20000

0.21388J
0.21388J
0.0G000J
0.00000J

-0.08664
-2.00000
0.02154
0.00000

-0.71767
0.00000
-1.21045
0.00000

-4.34912

-1.38601
-2.00000

-5.00000

0.00000J

0.00000J
0.00000J

0.00000J

0.00000
-0.16667

-0.00609
0.02283

0.00000
0.00000
0.00444
0.13946

0.00000 |

0.00000
-0.36234

=0.17633 |

-0.05571
-0.18172

0.01334
-5.00000

0.00000
0.00000
-0.45814

-0.26497
-

-

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)
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with eigenvalues

-0.13027 +  0.21388J

-0.13027 -  0.21388J (2.107)
-0.16667 .+  0.00000J

-0.20000 +  0.00000J

r -
<4.37192 -0.03420 -0,05145 -0.05565
D-+§1C = | 0.00000 -2.00000 0.00000 -0.06896 (2.108)
1.32327 0.00202 -1.36221 0.00048
L 0.00000 0.00000 0.00000 -5.00000_
with eigenvalues
-4.34912 + 0.00000J
-2.00000 + 0.00000J
-5.00000 + 0.00000J

We now give graph of selected states along with their fast and
slow components using (1.85), (1.86), (1L.96) and (1.97) for both the left
and right eigenspace decompositions. The plots will be based on the Po and

Po iterates. On the graphs of the individual components, the following

legend will be in effect

ACTUAL STATE
SLOW COMPONENT -=--=-cccswccaa-

FAST mMmN‘ENT * s s s 000 TLOEBEO.

On the graphs of the actual state versus the approximaced state )

ACTUAL STATE
APPROXIMATED STATE " *°° EERTRTEE

The plots appear on the next several pages. The system is percurbed

A e e e e A om i e o m e a_m_ 4
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with an initial state vector of

= (1,23 -21,-1,42. (2.110)
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CHAPTER 3

ASYMPTOTIC SERIES DECOMPOSITION OF TIME-SCALES
IN LINEAR TIME-INVARIANT SYSTEMS

3.1. Introduction

When small parameters are present in differential equations defining
initial or boundary value problems, one of the popular methods used
[30] is to obtain an asymptotic power series expansion of the solution. Such
techniques have been well documented and can produce approximate solutions
to problems where otherwise explicit analytic solutioms are impossible or
exact numerical solutions are computationally not practical. Such systems

are of the form
x = f(x,t,e) x(0) = x_ (3.1)
and a solution is sought of the form
o 1 o
x(t)=x (£)+ ex (E)+..... (3.2)

When such an expansion converges uniformly in t as ¢+ 0 we have a regular
perturbation problem [8 ]. If there is a region of nonuniformity, usually

at one of the boundaries, we have a singular perturbation problem. In most
cases, the dynamics of the solution vector within this region of nonuniform
convergence involve fast transients or the so called 'boundary layer
phenomena." Thus, such singularly perturbed systems [8 ] are said to possess
an inherent two-time-scale property characterized by a steady state or ''outer
solution'" which is defined by the regions of uniform convergence of (3.2),

and the boundary layer or ''inner solution" where a stretched time variable is
usually introduced in order to achieve asymptotic converzence on the totai tice

interval. In the linear case such svstems take the form
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y =Ay+Bz y(0) =y,
(3.3)
H-é = Cy+Dz 2z(0) =z

Much work has been done to exploit the multiple time scale
property of (3.3) when designing regulators, pole placement, reduced order
modeling, etc. [3,7,40]. As a result, for a system which is known to
have fast and slow phenomena, the systems engineer is motivated to permute
the state in order to attain the above structure and take advantage of these
decomposition techniques. It is the purpose of this chapter to use multiple
time scale asymptotic expansions to obtain a '"steady state" and "boundary

layer" decomposition in (3.3) and show how this decomposition compares to the

eigenspace decompositions of Chapter 2.
| )

In Section 3.2 we obtain power series representations of our dichotomic
transformation matrices P and 5.

In Section 3.3 we derive important relationships between various
fundamental sets of solutions to (3.3) and any system satisfying (2.32).
These fundamental sets are based on our reduced order subsystem matrices and
the dichotomic transformation matrices P, ﬁ, Q, and 6.

In Section 3.4 we use Vasil'eva's method of matched asymptotic
expansions to obtain the 'boundary layer" and '"steady state" components of
the solution vectors v(t) and z(t). It is shown that this decomposition is
equivalent to the eigenspace decompositions of Chapcer 2 bv using one of the
fundamental solution sets established in Section 3.3.

Section 3.5 discusses some computational simplifications to the

dominant left and right eigenspace iterations based on svstem (3.3). The
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simplifications involve eliminating the necessity to take an inverse at

every iteration.

Finally, in Section 3.6 we discuss an important application of

these techniques, namely, reduced order control law design.

3.2. Series Solutiomns to Riccati Iterations

For proper spectral decomposition and dimensions m and n in (2.1),
it was shown in Section 2.2 of Chapter 2, that the following matrix

recursion equation for finding the dominant left eigenspace of (2.1)

-1
=.p - -C+P BP, -P A (3.4)
Petl ~B - (DFEB) . (DR ~C+PBR -PA)

will converge to the dichotomic solutiom of
R(P) = DP-C+PBP-PA =0. (3.5)

When (2.1) is in the form of a singularly perturbed model, (3.4) and (3.5)

become

= : -1
Py = B - (D+UPB)

. - - uP 3.6
1 (DB, - C +uP, BP, - uPA) (3.6)

k

and

R(P) =DP -C + +PBP - #PA =0 (3.7)

respectively. Approximate solutions to (3.7) have been used in {%,7,26] to

construct near optimal control laws for singularly perturbed systems.

In this section we construct an asymptotic approximation (to N terms)

of the matrix function P(+) as =~ -0 with respect to the asymptotic sequence
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{Pk}. Thus, we seek a solution to (3.7) of the form

p(k) =P+ rpt 4. .. (3.8)

Substituting (3.8) into (3.7) and matching separately like powers of ¥ to zero

we obtain
DR -C=0 (3.9)
'DP1.+P°BP° -p%A=0 (3.10)
DB ) pV-1-dgpd LoV L. (3.11)

J=0

Hence, each term in the series (3.8) is uniquely defined as follows:

o _-1

r°=p""c . (3.12)
pl=-p"1p%F +0 1p%

N -1l N1y -iN-l

Pl=-p I gt TNl epTh (3.13)

the asymptotic correctness of this series is obvious and we thus write (3.8) in

the form
N ..
e & ulad N+1
B(K) = ;2o Wp" +0(WTTT) (3.14)
or using standard notation
: 2 .
P(k) ~ . rdpd (3.13)

j:O

One question we might ask is how do the iterations of (3.6) relate

to the individual terms in the series (3.14). After considerable algebra,

it is possible to show that

p————————— — -~
2
r
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N
T pl_ - N+1 .
Egpt -y =00 (3.16)

for N=0,},.....

This is to be expected, since (3.6) converges to the dichotomic s
solution of (3.7) which, due to the uniqueness of (3.14) with respect to the
asymptotic sequence {ﬂk}, must have this asymptotic expansion.

One area of research in the use of asymptotic expansions that has
received little attention is nonlinear difference equations. I1f we interpret
(3.6) with PO’-D-IC as an initial valge problem for a matrix system of nonlinear
difference equations, we can construct an asymptotic series solution to (3.6)

of the form

0 1 .

P =P +EP +.... (3.17)

Note that such an expansion converges as ¥ —0 uniformly in k and thus defines
a regular perturbation problem [8].

Expressing (3.6) in a more convienient form

(D +quB)Pk+1 = C +u.PkA . (3.1%)

We now substitute in the series (3.17) and obtain

o, 1 o] 1
+ Ay +
[(® u(Pk-+#Pk + )B)(Pk+1 + ‘Pk+1 L.

1
+..)A.

(o]
= ¢ ) +
C + l,,(Pk Pk

Zquating like powers of - we obtain the so called "aguations

of the variations" [13].




(o}
PPy =€

1 0_ .0 o
DPk+1 + PkBPk+1 PkA

N-1
N-1-j L oN-1
ng-i-l + on B BP1J<+1 P A

Since D-1 exists, we can solve (3.19) as

N
P =0, N>0
o

The solution to (3.22) is thus,

Likewise, the solution to (3.20) is found from

1 -l o_.0 -1 o0
= - +
Pl D B3Py TD Ba.
. ) o
Jowever, since P, .. = P, Vk 2 0
k+1 k
Pl = - 071p%° + 5715%) = constant matrix.
K+l k" k
Thus, ?} =0 =10

45

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.2%)
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Continuing in this manner, the equilibrium solution for the Nth
variation is attained after N iterations an is of the form.
N-1
N _ -1 N=1-j__j -1 N-1
P, = =D P Igp] {
3 Ik PRTY A (3.25)

which is equivalent to (3.13) Vk2N. While it is clear that (3.17) asympto-
tically solves (3.6) for any finite time interval, general stabilicy and
asymptotic correctness results for discrete time perturbation problems

remains an open research area.

In a completely analogous manner, the series solution for the

equilibriumof the dominant right eigenspace iterations

3

~ = - . - -I\ -,\ ~ . ~ -1 3.26
By = B+ uB+uaB -BD-BCR)-@+C B) (3.26)
P =Dt
Q
has the form
a ~0 al -
P=P +uauP + ..... (3.27)
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where
P°=0 (3.28)
pl = gp~L (3.29)
N Nl N-j iy, ol N1 -1 (3.30)
P o= (- T P dcp)-D "+aP” "p . .
j=1
Thus,
3 N . N+1
P(u) = _ZoujPJ-!- 0wy . (3.31)
J’

The series solutions (3.14) and (3.31) will be of importance in Section

3.4 when we obtain a two-time-scale asymptotic series solution to (3.3).

3.3. Fundamental Sets of Solutions

Ia this section we develop some basic properties relating the
dichotomic dominant left and right eigenspace transformations of Chapter 2.
The need for these properties will become apparent in the next section.

One of the basic properties of linear homogeneous svstems of

difrferential equations of the form

x = Fx (3.32)

w
o]
[as
rt
o
1]
X
v}
8]
i

: = 4. g
‘s that a fundamental matrix [41}! i

.. (4R 3
ey = e 2e33)
For a ziven initial wvalue problem xtt3 = x_, the scwiicn
te (3.32) for t =z t_ 1is unicuelv ziven bv

A 4 e m_maad
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x(t) = X(OX(e) % (3.34)
or when using (3.33)

F(t-co)

x(t) = e x, -

Another property of the fundamental matrix (3.33) is that

given any nonsingular matrix M,

Y(t) =e C- M (3.35)

= is also a fundamental matrix.
ﬁ‘ For system (2.1) satisfying condition (2.32) we have

established transformation matrices P, Q, ﬁ, and-Q such thar

- r -
A B !'I Q |'A-BP 0 . I-QqP -Q°
- & ‘ Q q (3.36)
. ¢ D, -p I-PQi O D+PB, P I
"y 87 139 P a-k o | 1 3
r ) = (3.37)
b -~ - ~ -
t; C D -Qq I 0 D+CP| G I-QP
r — - - - - - - -
r
F] Thus,
b '—A
¢c o|° ST (a-BP)t o "
- 1 Q 7e( BP) 0  I-QP =Q
{ e = | (3.38)
.
r‘ P I-1Q 0 e(D PE) t P I

i3 a fundamental matrix for (2.1).

| Thus, by (3.33), so is

Aoton 8
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- -
. - = ~ - _ -
- 't Q I Q e(A BP)t 0
e - = (3.39)
+PB)t :
=P 1I-PQ P I-RQ 0 e(D PB) |
or, the columns of
] {(A-BP)t (D+PB)t j
P eV Qe |
X(t) = (3.40)
' - +
‘ -Pe(A BP)t (I-PQ)e(D PB)t
forn a fundamental set for the system (2.1). Likewise, using a similar
argument for (3.37), the columns of
Ao -A t ~ P
(I-PQ)e(A PC) Pe(D+CP):
X(t) = : . (3.41)
_GeA-FO)E L (DHCP)E
Now, by the dichotomic property of the transformations, there
exist nonsingular matrices T,, T2, TB and T4 such that
- ta-spyT, = A (3.42)
1 1 1
-1 .,
T, (D+PB)T, = ., (3.43)
~la-Boyr, = (3.43)
sy (A7FC)Iy =y -
T, (0P, = Y (.43
wnere ., is the dominant eizenvalue matrix and lj is the eigenvalue

matrix consistinz of the rest of the svectrum of (2.1).
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Using (3.42), (3.43), (3.44), and (3.45) in (3.36) and (3.37)

gives
a8 |awr Bl o lrt r't
, - - é! (3.46)
! ~ : D -1, 22
¢ b L, L,1.0 & T, T, @TQD
3 T 1 37 -1 -1." :
A B T, QT, | [Al 0 Ty aen  -T; |
; l= %: (3.47) |
- - 1 P -1 -1
which, by definition identifies
[a-yr, 3, | ’
- i T QT i )
1 2 ! 3 4
% . | (3.48)
LA , | |
(_ QTI Tz- —"PTB (I"PQ)TA ‘
as eigenvector matrices for (2.1).
While the magnitudes of eigenvectors are not unique, their
directions are. Thus,
| By | Do
i 2 AZt 3 A\lt
i ‘e , e (3.49)
T ~FTy
also serve as a fundamental set for (2.1), or in matrix form
Alc . \2t
T3e PT,e
< (3.50)
ALt ‘Lt
1 2
PT3e Tze

A PP - P - - e i m - m— ;- a—m
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However, postmultiplying (3.50) by the nonsingular matrix

i T3 0 . .
1 ‘ . (3.51)
0 Tz v
! gives
r{ - o(A-BP)t & (DHCP)t
t Y(t) =| | (3.52)
, | _pea-BR)t  _(DHCPIE |
#’ - - -
. Also, by a similar argument on (3.46) and (3.47),
| (1-Bge@-FOE Qe (DHFBIE
o ety = . : (3.52)
~ (A-PC)t +PB)t
-Ge AFC) (1-pye (O+7B)

also qualifies as a fundamantal matrix for (2.1).

T

Thus, in this section we have establisiad the existence of

four fundamental matrices for (2.1) based on the dichotomic transformation

LA an m ae {

matrices P, Q, P and Q. This flexibility will prove valuable in the next
b section concerning asymptotic expansions of our singularly perturbed

model (3.3).
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3.4. Solution by Asymptotic Expansion Using the Method of Vasil'eva

Using the results established in the first two sections of this
chapter, we wiil attempt to solve (3.3) using asymptotic expansion techniques.

In [13], the method of matched asymptotic expansions was proposed

as a method of obtaining asymptotic solutions to tﬁe general nonlinear

singularly perturbed initial value problem

L Y- fz,y.) 3O =y,

dt
(3.54)
. dz _ -
: T F(z,y,t) z(0) z, -
[e
3 To use this method, it is assumed that the root z = 2(y,t)
E of the equation
: F(y,z,t) =0 (3.55)
[C
1
! is stable in the first approximation or specifically, the real parts
! of the roots of the characteristic equation
o o -
_ DET( 3z AL) 0 (3.56)
t z=o(y,t)
t. be negative in D, whare D is a closed bounded domain in the variables
to st s tl’ z < Kl’ y' < KZ’ and 0 s u < My Under this assumption,
the method can be applied to (3.3) as clearly carried out in [13].
e In our case (3.54) reduces to
b
dv
— R . \ = r
qt Av + Bz 7 (0) 3.0
(3.37)
d=
== = 0) = 2
"‘ * 3t Cv + Dz z(0) o
K
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and the assumption becomes

Re(li) <0 Vkiec(n) i=1, ... m

with this assumption satisfied, we can proceed with the asymptotic solution

-

method proposed by Vasil'eva.

A solution to (3.57) is sought of the form

= + 3.58
yEy+m, ( )
z =;+n’z (3.59)
where
y=y°(t)+u-y1(t)+.......... (3.60)

denotes a formal power series in 4 whose coefficients depend on t,
and

- = ﬂby(T) + uﬂly(T) S (R (3:.61)

v
J

Denotes a formal power series in u whose coefficients depend on T= t/u.
Substitution of (3.60), (3.61) and the analogous expansions for z

into (3.57) yields

" dy ,d_ Ty = ;;.A(;+f.'y) + wB(Z+™2)
t dr
(3.62)
dz _ d - -
u E +-d—“.' =z = C(y+Ty) + D(z+7z) .

Zquating the coefficients of equal powers of ., those depending on t and
those depending on T being treated separatelv, we arrive at the following

equations for the variations.




Zeroth order,

First order,

order

C§°(t) + DEo(t) =0

g—,‘, ﬂaz(r) = Crroy(r) +.D1r°z(-r)
dzi’(t) = Ay_(t) + Bz (t)
%; noy(f) = 0.

dj‘:(t) = c§1(t) + D'z'l(t)
Eziéilz = Cﬁly(7) + Dnlz(f)
di(t) = Ay, (t) + Bz, (t)
d—.}:(—f) = Am v(r) + BT z(T)
i;;_-l—(t—) = Cy, (£) + Dz, (t)
i;%'z—(l)' = Cmy(~) +Dmz2()

dy, (t)

[}

it Ayk(t) + sz(t)
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(3.

(3.

(3.

(3

(3.

(3.

(3.

(3.

(3.

(3.

.66)

63)

64)

65)

i
67) -!
68)

69) l

70)

71)
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dm y(7)

4 = Ar',k_ly(‘v) + B, .z(T).

k-1

Since we are considering the initial value problem, the

matching conditions become

m,2(0) + 20(0) 2°

oy (o]
m y(0) +¥_(0)

[}
<

and for k 2 1

rsz(O) + zk(O) =0
my(0) + ¥, (0) =0

and, due to our stability assumption,

.-ky(r) = ﬂ'kz(@) =0 k 20.
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(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)

Solutions of this type are referred to as "inner'" and "outer',

"fast" and "slow'", or ''steady state'" and "boundary layer" depending on
the author.

Qur purpose here is to show that the series

ara equivalent to the solution of (3.3) obtained using the Ffundamental

matrix (3.32) . TIn other words,

(3.80)
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r =1 r T
vy o I -
BEER o (A-BR)E 7,0 (3.81)
: ;.g ‘P
Mo -', B
¥ "o
| = e(D*CP)tnz(o). (3.82)
RANRES

The approach here is to show that Yslow and Z 10w of (2.73) and
(2.74) found using dominant left eigenspace iterations are equivalent to y
and z respectively in (3.80). We then show that Y east and Zeost of (2.84)
and (2.85) found using the dominant right eigenspace iterations are equi-
valent to "y and L respectively, in (3.80). This is the purpose of using
fundamental matrix (3.52) since it expresses the solution in terms of these
components. Other fundamental matrices involve the iyapunov solutions Q

and Q that possess complex series expansions which we want to avoid.

First, we seek an asymptotic solution to y of the form

slow
x(t) = xo(t) + P'xl(t) + tieraeanen (3.83)
and a solution of 210w in the form
-Px(t) = -Poxo(t) S (PR TR X ) e .

where x(t) is the transformation variable of (2.70). When (3.3) is

used as the svstem model

. A-P(u)3B 0 Cox

PP Y Y
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Substituting in the formal power series (3.83) and (3.7)
into (3.84) and equating like powers of u, we obtain the following

equations of the variations

. = - (3.85)
X (A-BP )x
. = - - (3-86)
x1 (A-BP )x1 BPlx
x, = (A-BP k;l P, .x (3.87)
. = - - . .

L (A-B )Yl B j. k-i%3

We will now show that the differential equations necessary to

solve for ;k’ k 2 0 are equivalent to (3.87) Vk. The equivalence of

Z

and (-Px)k is a byproduct of the derivation for the equivalence of v

% k
and xk.
From (3.63) and (3.653)
- - . _1‘_.
o D ¥
s Poyo
dy_ _
-— = - 3.89
3t (A BPO)YO ( )
Now, from (3.67) and (3.69)
dz
- - -1 0
= D _
2 N T
d-r
-2 "o
=BT O
-_— _3 ‘l —
= - Pv','-D C(‘I-BD .:}}'
Q" L [}
=-py =P (3.20)
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;
L —
C d y, -BPy 91
= Tl (A-BPo)y1 -BPlyo (3.91)
and thus, for (3.71) and (3.73)
- dz :
- .. 1 “%k-1
F R L T:
3 B}
; dzk 1. P 2ZE:l - P fZE:& - .. =P EZQ (3.92)
! dt o dt 1 dt k-1 dt
; e = T Bo¥i
d -1 -1
p -
?! D "PA +D "PBP
i k-1
-D lPk_lA +p’! ¢ op BE, | _
j=0 3 j
TR T BV 7o TR,
12‘ -
= - P _.y. )
d;rk _ k-1 _
f. 3 - @-BP)v, - B j:O Pe-373 (3.94)

which is equivalent to (3.87) ¥k. Plus, it is obvious from (3.93) that
4 z. = - (PX)k’ Y.
We now consider the fast components.
Using the dominant right eigenspace iterations, the singularly

4 perturbed model (3.3) is traasformed into

v v
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% - A-P(n)C o =
v . (3.95)
b o RER) g
where x =y - Pz
0 (o] o/

-~ -~

v, = Qyo + (I-QP)zo.

P is obtained from (2.26) and Q is then obtained from (2.78).
The dichotomic nature of our fast and slow components led us to identify

fast and slow components of v and z as

A

y (1-PQ)x

slow yfast -

e

-Qx

¥4

z
slow fast

The differential equation for the fast state vector is

[ae 1

D+C

or
~

w =

w. (3.96)

Let - = t/., then (3.96) becomes

>

€2 = (echru(n). (3.97)
We now seek an asymptotic solution to Zeage of the form
w(=) = mo(‘) + ;'ul(f) .. (3.98)
and a solution to Yiast of the form
Pu(t) = ?oxo(-) + u(éoml(') + élmo(')) e
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Substituting the formal power series (3.98) and (3.27) into (3.97)

and equating like powers of u, we obtain the following equations of

the variations

@ (m |
i = Dw_() (3.99)
da (1)
= = Dw, + CPw_ (3.100)
diIJk(‘L') R k{_.l
— = P . .
I- Dwk+-Cj=o k-3 (3.101)

We will now show that the differential equations necessary

to solve for ﬁkz(‘f), k 2 9 are equivalent to (3.101) VYk. The equivalence

of -‘k}'(*) and (i";)k is a byproduct of this derivation.

From (3.66) and (3.79)

Thus,

from (3.70)

Thus,

= 2
ﬁoy 0, (3.10-—)
dr 2z
2 =prz. (3.103)
d- b}
d"lr(‘)
=A" v + B z. (3.104)
d- o o
~ 7 (=) == y(0) + | [a=_v(7) + 3= z()]d-. 3,103
7 (7)) = 7 w(0) . [a= ¥(7) + 3= 2(]d (3.183)




T

oy

To establish ﬂly(O),from (3.79)

=

0= ﬂly(O) + [Aﬁoy(c) + Bwoz(c),

My = - [ [An y(©) + B _z(0)]do

o
Thus,
x
r
Si : <) =
ince Poy( )
my(n =
and as a result
d*lz(f)
dr

. - th A
inallv, for the k  variation

(2}

RGO R Co

~
|

J
-

)

k-

z -1
BD

Bnoz(c)dc

dfoz(c)dc

dc

BD M 2 (=) - 7z (")]

= Drlz(?) : CPI—Oz(T).

(= : ~
k=177 + Bfk_lz(J)]d-
?= d'__lz(:)d:

-1 . -
8D )P ,zf7idT

6l

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)
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.
L " (a-BD"YC)B,m, _,z(@)do - ... - :[‘ -8 0)P,_ mz(9)de (3.112)
using
dr, .z(T) k-2
<l T2 -
ﬂk_l(T) D 7 D ¢ T pk_l_jﬂjz(f) (3.113)
j=0
o drr. _z(T) = dm,  _z(o)
— e\ = - D -1 .5 0 k-2 -
g =-p [ == do-2, | =& T4
T T
g @ dr_z(J)
b _3 )
f’! seese Pkg dc dc
= Plr.'k_lz(r) + Pzﬁk_zz(‘f) + ... + Pkffoz(T) (3.114)
k-1
= L B m.z("). (3.:. .2
j=0 k73 d
drkz(f) k-1
r Thus, T Dr’kz(T) + C J'Eo Pk_j-’v'jZ(T) (3.116)
Which is equivalent to (3.101) ¥k = 0. Also, from (3.1153),
'@
i ~ ) = (Pp). Tk =0- (3.117)
& ('y)k \Pﬂ)k k 20 /
; -
L Thus, we have shown that Vs satisfies
o
{ dy, -
rraii @ - BP)yo (3.11%)
_. and thac
d=, (") .
= = (D +Ipv— 7 3,119
) it © P z )
[
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likewise
E T = Prm (1)
y z (3.120)
z = -Pyo(t).
l Thus
y(t) = yo(t) + vry,(r)
- e(A‘BP)";o(O) +f’e(D+CP)T1rz(0) (3.121)
z(t) = zo(t) + nz(r)
= -2 WBRG (0) + (PRI, (g (3.122)
1 - ~ p _
g (t) L (A-BP)t 5o (D¥CE)T 5_(0)
= (A-BP) ¢t (D+CP) T (3.122)
l, z(t) ] -Pe e Tl'z(O)
The matching conditions (3.75)-(3.80) thus reduce to
y, = 7(0) + =y(0)
_l - (3.124)
z_ = z(0) + -z(0).
o]
However, from (3.120)
y, = ¥(0) + 2= _(0) (3.125)
z = - Py(0) + #z(0) (3.126)
or .
o1 [T 2F@ ]
= | . (3.127)
z I -P I "Z(O)
[}
Thus,
- r A3 -1 T
rv(O) oI le!y]
=[ b °, (3.128)
LTZ(O)- -P I.L L0 d

- . . a4
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which, together with (3.123), uniquely defines the asymptotic series solution
to (3.3) in terms of fundamental matrix (3.52).

In conclusion, given the initial value problem (3.3) that

satisfies (2.32), the presence of the singular perturbation parameter u

4 suggests seeking a series solution in two time scales. Vasil'eva's method
of matched asymptotic expansions is used for decomposing the solution vector
;' of (3.3) into fast and slow series components that are individually easier

to solve than the original higher order system. The attractive feature

of series solutions is that no state transformation is necessary. The series
terms for the actual states are computed as they are needed. In the eigen-

space iterations, this is not true. Transformed fast and slow states are

LEER I SO0 M a4

found, solved, and the actual states attained through‘’an inverse

transformation. From a computational point of view this method has to be

.vﬁgw

v

preferred since only two reduced order systems of differential equations are
i solved in attaining the high order solution. In the series method, two

F! reduced order systems of differential equations are solved for everv term

in the series. Thus, it is practical only when the number of terms in the
series required is small. 1In this section we have shown that the separation
of time scales attained in asymptotic series solution is equivalent to the
dominant eigenspace decompositions of Chapter 2, in that the convergence of
both methods is dependent on the existence of a dichotomic solution to the
Riccati equations (2.19) and (2.26). Thus, for a given state, the 'fast”
and "'slow" components of that state obtained using either decomposition

F, alzorithm will be the same.

oy

At

P

P — ; ah, . ad
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3.5. Simplified Iterative Schemes

One of the computational drawbacks of the dominant left and right

eigenspace iterations is the computation of the inverses
-1
(D+PkB) (3.129)
A -1
(D~ CPk) (3.130)

at every iteration.
Looking at the left eigenspace case, the iterative matrix recursion
is

-1
Pk+l (D+-PkB) (C*-PkA) (3.131)

which can be expressed as

DPk+1 = -PkBPkﬂ +C+ PkA. (3.132)

If this is approximated by

-~

DP

K+1 -PkBPk +C+ PkA

~

Pk+l

A-DP BP ). (3.133)

-1 N
D “(C+PA-P BP

Then we will have eliminated the need for the inverse in (3.131) at everw
iceration.
Likewise, looking at the right eigenspace case, the iterative

matrix recursion is

- - ~ =1
= + + (—\ ~
Pk+l (Bv—APk)(D CPk) (3.13%)
which can be expressed as
P = -3 . CP +B+aP . {3.135)
k+lD k+lC K B &Pk . 3.135)
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If this is approximated by

- -~ -~ ~
<

Pk+1D = -PkCPk +B+ APk

(3.136)

-~ ~

Z 22 2 -1
Pk+l (—PkCPk + B+ APk) D

we will have again eliminated the need for taking the inverse in (3.134) at
every iteration. [10] has used a contraction mapping argument to develop
conditions under which (3.133) will converge to the dichotomic Riccati
solution. This methodology can easily be extended to (3.136). When the
conditions of [10] are satisfied, (3.133) and (3.136) are computationally
superior t& (3.131) and (3.134). Unfortunately, the conditions of [4] are
somewhat conservative and are not satisfied by many svstems which we know

can be decomposed using (3.131) and (3.134).

3.6. Partial and Full Pole Placement

‘there are many applications using the techniques developed in
Chapters 2 and 3. They include robust designs, reduced order regulator
desizns, and reduced order modeling to only mention a few. In this section
we will show how the time scale decomposition techniques can be used to imple-
ment partial or full pole placement design.

We will now be considering the completely state controllable

svstem
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If the open loop eigenvalues satisfy (2.32), then we can apply

transformation (2.17) which transforms (3.137) into

[y A-BP B |[y G |
| = + { u (3.138)
n 0 D+PB | | n H+PG

where P is obtained using either (3.131) or (3.133). The transformation

involved here can be written as

y I o[y
= : (3.139)

which possesses the explicit inverse

.y I 0 -y—
z -P I n

Observe now that the pair (D+PB, H+PG) spans only the ''fast" controllable

(3.140)

subspace. Let D*=D+PB and H* =H+ PG and design a feedback gain F such that

(D* + H*F)

has m desired poles.

The control is of the form

u=fn (3.141)
= F(Py+2z)

v .

= [FP: F]!z_l (3.142)

and the resulting closed-loop system has n eigenvalues according to
c(A-BP) (3.143)
and n eigenvalues according to

s (D¥ + H*F). (3.1%4)
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Now apply transfo-mation (2.24) to (3.137). This gives
g a-Bc o ]{e] [oc-Pu
= . + u
z C D+CP z H
where ﬁ is obtained using either (3.134) or (3.136). The transformation
involved here can be written as
(e [t -2][y
= (3.145)
b4 (o] I z
which has the explicit inverse
-y I P E'
= (3.146)
z 0 I z
Observe now that the pair (A-PC, G-PH) spans only the "slow" controllable
subspace. Let A®=A-PC and G*=G-PH and design a feedback F such that
(A* + G*F)
has n desired poles.
The control is of the form
u = Fg (3.147)
= F(y-Pz)
= [F ! -FP] [‘z’] (3.148)

and the resulting closed loop svstem has n eigenvalues of
g (A% + G*F)

and m eigenvalues of

5(D+ CP).

P 30 DO

VS
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In general, both slow and fast modes may be designed for. In this case a
general two-state design procedure may be implemented. Assume we have block

diagonalized (3.137) as done in Section 2.3.

b A* 0lf=x G*
= + u. (3.149)
wl o D* || w H* |

-

We arbitrarily chose to design for the slow subsystem first. Thus, we chose
an FS such that

c(A* + G*Fs)
has n desired "slow' eigenvalues. Letting
f

u=u +u
(]

where now
u =F x,
s s

the partially closed loop system looks like

X A* + G*F 0 X G*
= S + ug- (3.150)
w H*F D* | w H* |
- - o S - - - - -t
Now, let

v =w + Sx

which transforms (3.150) into

[x—’ [ A* + G*F 0 lx [ e* 7
s !
|

=1 u.. (3.151)
b H"FS+S(A*+G*FS)—D*S D¥

rn

[
We pick S such that

H*FS + S(A*-l-GFS) - D*s = 0. (3.152)

This Lvapunov type equation has a unique solution if

o
[
(1)
(WS
~

7(D*) "5 (A* + GFS) = 3 (
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and thus can be solved algebraically [32]}. 1If

min|o(D*)| > mx|c(A*+G*F3) . '(3.154)

Then the iterative scheme (2.80) may be used to solve (3.152). With this S, the
pair (D*, H*+SG*) now spans only the "fast' controllable subspace, and we can

design a feedback gain F_ such that

£

o (D* + (H*+SG*) Fp)

has m desired eigenvalues.
Thus, the composite control is
u= st + Ffv
= Gsx + Ff(w+Sx)
= (Fs+FfS)x + Ffw
- [(Fs+FfS):Ff][:J (3.155)

and using either transformation (2.72) or (2.83), (3.155) can be expressed in

terms of our original state variables. This control places n eigenvalues of

o(A*+G*Fs) (3.156)

and @ eigenvalues of

o(D*+(H*+sc*)1=f). (3.157)

This technique has been applied to singularly perturbed systems [42] where it
is shown to be a generalization to results obtained in {7,26,40]}. This
technique is also applicable to discrete time models as shown in [43]. 1In this

case, the dominant eigenvalues are part of the "slow' spectrum.
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CHAPTER &
SINGULAR PERTURBATION MODELING OF MARKDV CHAINS

4.1, Introduction

The previous two chapters have unified and extended many results on
the control and analysis of deterministic two-time-scale systems. For stochas-
tic systems modeled as Markov chains we can extend the theory of time scale
decomposition to these probabilistic models where now 'slow' aud *"fast" eigen-
modes correspond to "weak" and ''strong" transition probabilities.

Markov chain models are well known in the analysis and control of
stochastic systems [14,15,21,44]. Until recently, however, this analysis was
limited to simple systems due to the tremendous dimensionality requirements
of most Markov models. Recent applications, such as management of hydrodams
[22,25] and queueing network models of computer systems [21,45,46], have
accentuated the need for reduced order approximations of large scale Markov
chains. 1In this regard particularly promising is a perturbational decomposi-
tion-aggregation method of Pervozvanski, Smirmov and Gaitsgori [23,24,47,48],
and Delebecque and Quadrat [25,49]. The method assumes that the groups of
strongly interacting states are known and treats the weak interactions between
these groups as perturbations. The result is a short-term decomposition. Over
a longer period the weak interactions become significant, while each group of strong-
ly coupled states can be replaced by an aggregate state. A long-term aggre-
gate model is thus obtained. It is the purpose of this chapter to show how
such weakly coupled Markov processes can be modeled as a singularly perturbed

system. This enables us to apply the decomposition techniques of chapaters 2

and 3.
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In Section 4.2 we introduce the two-time-scale Markov chain. Slow
and fast components of the chain are identified and used to construct the
singularly perturbed model.

In Section 4.3, a grouping algorithm [34] to used to show how the
states of an arbitrary Markov chain can be ordered so as to exhibit the two-
time-scale property.

Finally, in Section 4.4, a two-time-scale asymptotic expansion of
the steady state probability distributior is constructed using the singularly

perturbed model. An example is then given to show how the series solutionms

can be used to efficiently calculate the invariant probability measure of a

1 large queueing network.

4.2. Singular Perturbation Modeling

3 In this section we introduce the two-time-scale Markov chain and
F! show how it can be put into standard singularly perturbed form.
Consider the n-state Markov chain

' €M) . p(rya + ¢B)

. o (4.1)

b
S
E where p(T) is the n-dimensional row vector of probabilities pi(T) to be in

p state i at time 7. Hence,

g a
PR T = s
& 1=1P (M =1 T20. (4.2)
L A and B are both n-dimensional Markov generators and A has the form
b
9
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A= 2 (4.3)

N

where Aj, j=1,...,N are n, dimensional Markov generators.

3

Thus, in (4.1) N groups of strongly interacting states have been

N
identified. Group j consists of n, states and jE n, =n., The weak interactions

3 13
between states in different groups are modeled as multiples of a small posi-
ok
tive scalar €. We assume throughout the thesis that for 0 <¢<£¢ the process

(4.1) has a single ergodic class with unique stationary probability distribu-

tion p defined by
0 = p(A+€B) (4.4)

Furthermore, let each of the N generators Aj define a Markov process with a
single ergodic class, This implies that each Aj has one zero eigenvalue.

The corresponding right eigenvector tj is the nj-dimensional column made of
ones. The left eigenvector vj is the nj -dimensional row of statiomary prob-
abilities for the states in the j-th group when e¢=0 in (4.4). The matrix form

of A,t., =0, v.A =0, and v.t,. =1, j=1,...,N, is
J ] J 4 J ]

AT=0, VA=0, VT=I, (4.5)
& 0 0 0 v, 0 0...0
0 t, 0 ...0 0 va 0 0
T = P, Vo= - (4.6)
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where IN is the NxN identity, the j-th row of T is made of nj-dimensional
columns and the j-th columm of V is made of nj-dimensional rows, that is T

is nxN and 7 is Nxn. The influence of weak interactions ¢B in (4.1) will
become significant after a long period of time T. Hence T-scale is called
"fast time." To see the influence of € "sooner" we introduce the "slow time'

t=¢r. If, for example, T is in weeks and e=-§% , then t is in years. 1In

t-scale model (4.1) becomes
p(t) = p(t) 2 + B) (4.7)

where the dot denotes é%. Initially p(t) will rapidly approach the null-space

of.gras if the N groups were separated from each other. After that, pB is no

longer negligible with respect to p %. This behavior is a characteristic of

singularly perturbed systems [3,13,35]. As in [35] our goal is to transform

(4.7) into a standard singularly perturbed form which makes the slow and fast
B

parts of p(t) more explicit. For N slow variables we take the elements ' of

the row
T o= pT (4.8)

because 7,, is the probability of the process (4.7) tobe in group j. Since the
J

transitions between the groups are slow, ﬂj will change slowly. After the

- 1 i
fast transient is over, probability P is approximated by 4jvj’ where v? is the
scaticnary probability for the process to be in state i, once it is in group i.

i - - .
v, is the fast part of p;- Ofn such differences,

Thu i £ A T s
Thus the difference Yl Py 35

a-N are independent and are defined by

YV =p-TV, WT=0. (4.9)

T TN e T TR T TR T AT T T e AT e R e T e
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W is an (n-N)xn block-diagqnal matrix of the form

]

L

This defines the transformation

Wy 0
vy (4.10)
O ..
WN—
-1 7]
-1
: (4.11)
0 1 o0 -1
0 s e eas 00 s e 0 1 -lJ
p=["Y] [V (4.12)

W

to perform the inverse transformation, we define the n x (n-N) block diagomal

matrizx S such that

= = Z
NS =1 o, VS =0. (4.13)

" .3 gives the explicit inverse of (4.1lZ) as

-7 the form

{7,Y1 = p{r,s] (4.1%)
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51
82 0
S = 0 . (4.15)
and each Sj is an §jx(nj- 1) matrix of the form
1- L -vg ceteee -vsj-l
J J J
-v¥ l-v2 -vgj-l
b b
s. =] : : 4.
S S : : “-16
: . ni-1
: l-v,~
Y3
1 2 nj-1
-y -v -v,
] J i

using (4.14) and (4.12), (4.7) can now be transformed into a standard singular

nerturbation form

o = TVBT + YWBT
(4.17)

&Y = C.VBS + YW(A +€B)S
whose properties are well known [3,12]. The crucial stability condition on
W(A +¢€B)S is satisfied by the fact that the j-th block of the block diagonal
matrix WAS is Aj deflated for the zero eigenvalue. Thus, from the basic
assumptions on (4.l), Re Ki(WAS) <0, i=1,...,n-N. Assuming that <Y a0 and

substituting

Y = -¢TVBS (WAS) T (4.18)

. . A . - A o ad Aa &

vy
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from (4.17) an s-corrected slow. model is obtained
% = (VBT - cVBS (WAS) ~'WBT) ~(6.19)

which for ¢ =0 reduces to the aggregate model obtained i{n [23]. Note that the
inverse in the correction term {s '"decentralized," and consists of N inverses
of smaller diagonal blocks. From (4.18) we see that the slow part of Y is only
0(¢). 1f we express (4.17) in the fast time scale T=t/¢, or, equivalently,

if we apply transformation (4.12) to (4.l1), we would obtain

du a .
T3 = 0(¢), 7 = YWAS +0(e). (4.20)

Thus, in the fast time scale as ¢-~0, the slow variable  tends to a constant
and the system matrix for fast variable Y is WAS. In this manner two-time
scale asymptotic expansions for i, Y will be constructed in section 4.4. Note
that in the fast time T, to 0(¢), the interactions between groups are neglected.
In the slow time t this is not true. This points out the necessity of posing
the problem in the slow time scale if we are to use perturbation methods in

the analysis and control of Markov chains on the infinite horizon.

Let us now consider the discrete time model

p(k+l) = p(K)P = p(ly (2 + 1 + B) (4.21)

where P is the probability transition matrix and A and B are generators. As
in (4.7), the strong interactions appear as multiples of % , that is, (4.21)
is expressed in the slow time scale. The transformation (4.12) results in

N(k+1) = T(k)(I + VBT) + Y(K)WBT

(4.22)
Y(k+l) = T(K)VBS + Y(K)W(E + I = B)S.

Ny PO A .
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Properties of this type of discrete time models are discussed in [43,50,51].

Note that the same model is obtained from (4.17) Lif ﬁ, Y are replaced

W(k+l) - k), Y(k+l) - Y(k),

that is for the step size 1. The slow model analogous to (4.19) is obtained by
neglecting €Y (k+1) -Y(k)].

Throughout the remainder of this thesis singularly perturbed models
(4.17) and (4.22) will be used extensively. It is important to realize that
by just finding the steady state probabilities vj, j=1,...,N, we can construct
the transformations (4.12) and (4.14). Thus, these singularly perturbed models
are obtained with little computatibnal burden once the structure of (4.l1) is
identified. The problem of permuting the states of an arbitrary generator to

exhibit this form is the topic of the next section.

—— ? e
o :

4.3. Ordering of States

The preceding section assumes, as do the earlier references [23-25,

| r"'wgﬁ' v

47-49], that the N groups of strongly interacting states are known and the
* generator of the process (4.1) is of the form G =A +¢B, where A is block-diagonal
and eB is small. This situation, convenient for an asymptotic analysis, is

seldom wet in reality. The ability to identify groups of strongly coupled

:. states given an arbitrary generator is an important modeling task. In this
%
i section we address this task. Our main tool is a state ‘'grouping" algorithm
developed in [34] for power system matrices which we apply here to Markov
®
3 generators.
; Consider the generator
(@
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T-.05 .05 7
.05 -.46 .05 .36 }
.05 -.46 .05 .36 |
.05 -.41 .36 :
2 -.25 05 5
G = :
2 .05  -.66 05 .36 ;
2 .05  -.61 .36 :
.2 -.25 .05 ?
.2 .05 -.6L .36 é
2 2 -2
(4.23)

This generator describes the transitions between the states in a queueing network
of a computer system [21,46] consisting of a filing device D, a secondary

memory M, and a processor C. Assuming that there are three users, the states

ESERRE are defined inTable4.l whose entries are the numbers of jobs inD, C,

»*10

and M queues.

! ' H ! 1 :
$ . ' L. - | [
E xl! le Xy %, xs ! <°f Xoo gl Xy 3210
ool 3tzprpoi2ziriolLlla0
, | , j e b A l
Ci 0’ Ll1:2i3}0°1izigr 1 0
M Q G Q Q. 3 L 1 2 2 3
Table 4.1. States of Queueing Network Model

The main difficulty in determining whether a scate interacts weakly

with a group of states is that its interactions with each state in the group

Mo honBn Bl A

e o e e e
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can be small, but the sum of these interactions can be significant enough to
be considered strong. In other words, in practice ¢ is not infinitesimal and,

if ¢=0.1 is considered as weak, 6¢ .s strong. Thus, already for (4.23), and

certainly for more complex forms of G, a systematic procedure is required to ?
determine the strongly interacting states. Such a procedure is Avramovic's
grouping algorichm.

[
p! The grouping algorithm is based on the following property of a process ]

ey

with as yet unknown groups of strongly interacting states: I1f there are N
) such groups, then matrix G will have N-1 small eigenvalues which are clustered l
near its zero eigenvalue, Let the colums of an nxN matrix M be the right

eigenvector of G for the N smallest eigenvalues, including A~ =0. Each row of
M corresponds to one of the n states. We observe that T in (4.6) is the limit- #

ing form of M when interactions are neglected and the states are grouped.

e R . & !.'.

Note that states in the same group have identical rows in T while states not

in the same group have rows in T that are perpendicular to one another. By

§ Tap.

continuity we expect that the corresponding rows in M should be "nearly identical"

and hence close to being linearly dependent. Instead of investigating 'nearly

P

identical" rows of ﬁ, Avramovic's algorithm does the opposite: it starts by

PRad he . _an o

determining N rows of M which are as linearly independent as possible. In the 1
3 algorithm, these rows are found by a simple Gaussian elimination with full !
{ ‘
- B
 , pivoting. The corresponding N states are called the reference states around :

which the remaining n-N states should be grouped. When the N reference rows of
! M are found, a permutation ™ is performed so that these rows appear as the

. first N rows. Thus the NxN matrix My in

L . — Y
- S L P S S S B,




-—v—v ~ T T T w s

81
— -
¥
ﬂ’ﬁ a M= (4.24)
is nonsingular and a new basis of the same eigenspace is
1
e - ol (4.25)

S

In [28] important properties of matrix L are deduced from the fact that it is
the "dichotomic!" solution of the Riccati equation (2.26). A property to be
used here is'that the sum of entries in each row of L is 1. Thus, if M has
"nearly identical" rows, each row of L will have an entry close to 1, and all
other entries close to 0. The criterion for grouping is simple. A row of L
belongs to the group defined by that reference row which has entry 1 in the
same column in which the examined row of L has its largest entry.

We now proceed to apply this algorithm to determine four groups of
strongly interacting states in (4.23), The four smallest eigenvalues of G are

0, -0.025, -0.065, -0.107. The eigenvector matrix ¥ and the matrix (4.25) are

as follows:

PO P S T PP — T P SPNP TS SN TG S Foon

PIDREPIUEN SOy PPt §
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2. 1.32 .41 .25 -.49 S. 0 1 0 0

4.1.32 -12 -.04 .41} 0 0o o0 1
5.1.32 .38 .35 -57] 2./.08 .92 0 of. (4.26)
6. /.32 .03 .28 .32 3.| o .17 .83 0
7.4.32 -1 -.07 -0L] 4| 0 0 .3 .66

8.1.32 -.01 .27 .43 6. 0 .11 .89 0

9. .32 -.17 -.13 -.071{ 7. 0 0 .26 .74

o
o
'—l
>
1]

o)
o

10. .32 -.19 -.19 -.lﬁ_} 9.

Note that the rows are labeled with the index of the state. An excellent
grouping is achieved, because each row of L has one distinctly large entry.

Therefore the groups are {4,7,9,10}, (3,6,8}, {2,5}, il}. The permutation of

the generator (4.23) to this ordering of the states is

e eccm———————- .
{
-.41 .36 y .05
¢
2 -.61 ..36 | ..05
{
2 -.61 .36 .05
2 -2 | (4.27)
------------------ v T
..05 | -.46 .36 .05
! |
.05 | 2 .66 .36 .05
i
.05 : 2 -.25)
""""""""" [T !
.05 |- .46 361 .05 !
. | i :
| .05 .2 =25 i
; """"" cTTmen
— 05 L1205,

Sk
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where the weak coupling is apparent. The physical interpretation of the
grouping is now clear. The aggregate ﬂj(t) is the probability that at time

t there are j-1 jobs in the D-queue. This is intuitively clear since the mean
service time of a filing device D is typically much slower than that of second-
ary memory M or processor C. The Y(t) variables describe fast fluctuations
between the C and M while the D-queue is in a given state. The accuracy of the

approximation using the aggregate matrix

—
-.025  .025 0 0 —}
.05  -.073 .023 0 |

VBT = ; (4.28)
0 .05 -.068  .018 |
[ o 0 .05 -.05_:

can be judged from the fact that its eigenvalues 0, -,027, -.071, ~-.118 are
close (less than 107 error) to the corresponding eigenvalues of G. With =

correctec model (4.19) they are within 27%.

4.4. Two-Time-Scale Asymptotic Expansion

One of the applications of the singularly perturbed model (4.17) is
the ability to obtain a two-time-scale asvmptotic expansion of the solution
vector p(t). Then "slow" and "fast'" components can be solved independently
rather than solving the high order system of "stiff" differential equations.

It is the purpose of this section to construct such an expansion. As time
tends to infinity, the asymptotic series of differential equations will reduced
to algebraic equations which can be used to solve for ; in (4.4) in a computa-
tionally attractive manner, The ability to compute E efficiently for large

chains has many applications [45].
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We seek a solution to (4.17) of the form [8,13]
1= fiee) + L (7) (4.29)
Y = Y(t) + L, (7) (4.30)

where each term is a power series in ¢ with coefficients depending either on ¢,

t .
for the slow ("outer") series, or on T = ¢, for the fast ("inner") series.

() = ﬁo(t) + eﬁl(t) ¥ ... (4.31)
Lo(r) = 12(T) + eL.r]i('r) + ... (4.32)
Y(t) = Y‘Zo(c) + eY“_l(c) o (4.33)
Ly (T) = L?(r) + GL;(T) ... (&4.34)

Substituting (4.29) through (4.34) into (4.17) and equating the terms with like

powers in ¢, separately for t and T series, we obtain, for zeroth order terms

() = 5 (VBT f_(0) = W(0) (4.35)

o) =0 (4.36)
‘"

?.o(c) =0 (4.37)

e L

—g— = Ly(MWAS 19(0) = Y(0) (4.38)

e see that within 0(e) the fast part of " (t) and the slow part of Y(t) are
zero for all t. Furthermore, due to the asymptotic stability of (4.38) the fast
term L?(?)-0 as T==%'*”. For small ¢ thi: "boundary layer term" is negligible
for all ¢ >E, where : is of order -€¢ine¢. Thus, for £>t p(t) is approximaced

withia 0(¢), by ﬁo(cw.
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For first order terms we obtain

hl(c) = T, (£)VBT + Y., (£)WBT (4.39)
dLTl]m .
37— = Ly (TIWBT (4.40)
IRCE ﬁor_c)VBS(WAS)'l (4.41)
1
dL, (T)
LET - L}(T)WAS + Lo ()WBS (4.42)

The matching conditions become L%(O)--ﬁl(O) and L¢(0) =-?1(0). By direct

integration of (4.40) we obtain

T
1 - 10 ) .
L.ﬂ('r) Lﬂ(o) +iLY(c)WBT de. (4.43)
. 1
Since L.:.i(m) =0,
Ll(1) = =) Ly (o)WBT do (4.44)
ll T
using (4.38), this becomes
@ dLy(C) ] .
l.:].'l(T)=-J o (WAS) hupT do = -[Ly (=) - Ly (T)] (WAS) LBt
T

=1¢(r) (WAS)-]'WBT

thus at each stage only separate fast and slow differential equations need to be
solved. An important property is that the fast equations are ''decentralized"
groups of states due to the fact that WAS is block-diagonmal., From (4.35)

through (4.43) we have

P I U S M O T
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) = (0 + edy(®) + L2m) + 0(sh)
(4.46)
Y(E) = 12(M) + ey (8) + Ly(M) + 0(e?)

higher order terms are obtained similarly. The computational advantages of the

eigenspace iterations over the series solutions have been discussed in Chapter

3. However, for an intuitive understanding of how the solution vector decomposes,

the series solutions are more attractive. As t—<, the L-terms vanish and the

equilibrium or steady state distribution E is given as

P = (ﬁo + ":‘1 +...)v+(e71+e

Byt (4.47)

where ﬁi:'ﬁi(c) and 7}.=?i(t) as t~», The terms in (4.47) are easily computed

from the following sequence of algebraic equatioms.
]

N
= =i
VBT =0 )75 = 1 (4.48)
vy = -1
Yl = -..OVBS(WAS) (4.49)
N -
i i - , -1 -
Yka -(Yk_lwss + Ty 1 VBS) (WAS ) (4.351)
N i
_T’. ¥ = ZT = /
4 VBT + Y WBT 0 i=l~1k 0 (4.52)

Note that VBT is an NxN matrix and WjAjsj is (ﬂj_l)x(ﬂj_l) for j=1,...,N.

Thus we need only solve N and ﬂi-l,i=l,...,N dimensional systems of linear
equations to obtain a good approximation to E. If we were to solve (4.4)
directly not only can the dimension of A +eB be large, but also the presence of

: could result in an ill-conditioned problem. Note that (4.48)-(4.32) are

inrdependent of «.

At e 2
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Queueing network models of computer systems are often in the form of
a large Markov generator [21,45,46]. Performance analysis measures are usually
functions of E. By using (4.48)-(4.52) these performance measures can be
efficiently computed on the subsystem and aggregate level. We illustrate this
concept on the model used in [46]. 1In this paper various iterative techniques
for computing E are compared from a computational point of view. Direct methods
of solution are not ccnsidered due to the large storage requirements. However,
it is acknowledged that the results obtained using direct methods are more
accurate and require substantially less total time than iterative techniques.
The singular perturbation method we have proposed is a hybrid of direct and

iterative methods. Each series term of ; is solved directly on a significantly

terms must be solved (which can be viewed as an iterative process with conver-
genze rate ak). We will now compute 5 using (4.48)-(4.52) for the model in [46].
This queueing model represents the architecture of a time-shared multiprogrammed

paged virtual memory computer system. Assuming three jobs in the system, the

Markov generator is of 20th order. Using the asymptotic series solutions (4.47)-

(4.52), EO = "IOV and ;1 =T]0V +¢ (x:,lv +‘VIW) were computed and compared to the actual

steady state distribution ; as follows:
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adiaad

Sad

A

j

[ 0.0002493 " 0.00024837] [ 0.00024937]
0. 0004452 0.0004455 0.0004452
0.0007962 0.0007992 0.0007961
0.0014284 0.0014338 0.0014282
0.0002509 0.0002502 0.0002508
0.0004483 0.0004489 0.0004483
0.0008027 0.0008052 0.0008028
0.0002530 0.0002502 0.0002530
0.0004527 0.0004489 0.0004527

P 0.0002530 0.0002502 0.0002530
0.0082679 0.0082697 0.0082677
0.0080455 0.0080753 0.0080451
0.0078604 0.0078856 0.0078601
0.0082979 0.0082697 0.0082984
0.0080917 0.0080753 0.0080921
0.0082914 C.0082697 | 0.0082919
0.1049480 0.1049442 : 0.1049481 |
0.0363037 0.03625%2 | " 0.0363041 |
0.1048605 0.1049442 | 0.1048591 :

Lo.69c,w6535_J 50.69962794 Lo.6996341_i

Note the accuracy using just one or two terms in the series.
In the remaining chapters the concepts developed in this chapter

are applied to controlled Markov chain problems. Efficient two-time-scale

P

design algorithms result in a near optimal contrcl policy.

Y amt ag
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CHAPTER 5

THE DISCOUNTED COST PROBLEM FOR CONTROLLED MARKOV CHAINS

5.1. Introduction:

In this chapter we consider the controlled Markov chain

p(t) = p(t)(Aéu) + B(u)). (5.1)

When the process is in a given state x, the control policy u(x) determines the
transition rates of the chain.
We assume that aij(U(i)) and bij(u(i)) are continuous on the compact

set Ui for all i,j=1,...,n. Thus, a policy u€R" is of the form

u(l)

u = -

u(n)
and can take any value in the Cartesian product le sz cea X Un' A control
policy u is usually chosen to meet some performance specificatiom. In this
chapter we seek a control policy that minimizes the infinite horizon discounted

cost [14,15]

0
ag -
J=Et [ e f(x_,u(x ))do (5.2)

< o] c

<o
where % is the discount rate and f(i,u(i)) is the instantaneous cost of
being in state i using control u(i). It is assumed that f(i,u(i)) is
continuous on Ui’ for i=1,...,n.

In general, there are no closed form solutions to this problem.

Thus, iterative tachnigques must be used to obtain the optimal policv. These

methods mav be classified as either policv iterationms [l4] or value iterations

{13.45]. DPolicy iterations usuallv require more computatioms per iterate,
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however, they often converge faster than value iterations [15]. The large
dimension of the generator in (5.1) can make policy iterations impractical.
Also, the order of magnitude difference between AE?) and B(u) can result in
ill-conditioned nonlinear programming problems during the minimization phase
of these algorithms. In this chapter, we apply the results of Chapter 4 to
obtain a near optimal policy with less computational problems.

In Section 5.2 we motivate our approach to the problem by
decomposing a finite time discounted cost for a fixed policy into aggregate
and fast components. Thi; enables us to identify an "aggregate' discounted
cost problem that we will use to approximate the high order problem (5.2).

In Section 5.3 we conmsider the solution to the problem (5.1) and (5.2)
as ¢e~0. We then establish in what sense the resulting policy i.s near optimal.

Finally, in Section 5.4, a decentralized algorithm is presented for

obtaining a near optimal control in a computationally attractive manner.

5.2. Decomposition of the Cost for a Fixed Policv

When the policy u(x) is fixed and time is finite, (5.2) reduces to

t
J(xo,t) = E f eaof(xq)dc. (5.3)
X o

It is well known [14] that J is the solution of

g

4

J+al = (-:- +B)J + f (5.4)
where

£ = [£(1),£(2), ... E(@)iT (5.5)

Aad o4 T —.

PSP . ) 4 PP S W Sy S L s . -A‘J
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u and J(t) is an n-dimensional column vector whose ith entry is the cost incurred
starting in state i at time t.
As in (4.7), (4.12), (4.14) we transform (5.5) using
., J = V7, J =W (5.6)
- n Y
and obtain
J +aJ_ = VBTJ + VBSJ_ + Vf (5.7
- n n n Y
eJ + ecal = cWBTJ + W(A+¢eB)SJ + eWf. (5.8)
Y Y n Y
- Since this system is in standard singular perturbation form, we can apply
Vasileva's two-time scale expansion procedure [13],
= J + < .
Jn(t) Jn(t) £n( ) (5.9)
e J () = J (e) +£ (1) (5.10)
Y Y Y
where each term is a power series in € with coefficients depending either on
l’ t, for the slow ("outer") series, or on ~ -5, for the fast ("inner'") series,
T o(e) = 3°e) + eTice) + .- (5.11)
n n n
L (1) =£2) + ecl(r) TR (5.12)
n ! n
T (e) = T2(e) + eTi(e) + --- (5.13)
Y Y Y
L (1) =£92¢) + eLi(z) + «o0 . (5.14)
Y Y Y

Substituting (5.9) through (5.14) into (5.7), (5.8) and equating the terms
with like powers in e, separatelv for t and T series, we obtain, for zeroth

order terms

-

d3f(t)
dt

+aJ0(e) = VBTT (8) = VE,  I2(0) = I (x_.0) (5.13)

— et 2 a




[P W Y

.c:(r) =0 (5.16)

3:(:) =0 (5.17)
a2(1) o o
L = wasel(n),  £3(0) = 3 (x,0). (5.18)

We see that within 0(c) the fast part of Jn and the slow part of JY are zero
for all t. Furthermore, due to the asymptotic stability of (5.18) the fast
term £$(r)-0 as t-le:--» o, For small ¢ this "boundary layer term" is negligible
for all t> t, where t is of order -efne. Thus, for t>t cost J is approximated
within O(e) by the "aggregate' cost jﬁ(:) defined by (5.15).

For first order terms we obtain

-1
dJ ()

n =1 - -1 -1

T + aJn(c) VBTJn(t) + VBSJy(t) (5.19)
act(o)

n = --1

1 - vsf(0), I:(O) () (5.20)
e = - (was) "L (WBTT? () + WE) (5.21)
4 (z)

o - o 1 - _-1

——+ at?(r) WASIi'(t) +UBSLO(T),  £0(0) = -T(0).  (5.22)

Observe that at t=0Q, t=0 the first order terms in each series sum to zero.
Also observe that t+= all £ terms tend to zero. Hence, by direct integration

(5.20) vields an algebraic expression for Li(t) in terms of ts(r),
1 -1 0
£ (1) = VBS(WAS) £Y(r) (5.23)
that is, at each stage, onlv separate fast and slow equations need to be

solved. An important property is that the fast equations are 'decentralized"

groups of states due to the fact that WAS is block-diagonal.
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From (5.9), (5.10), (5.16), and (5.17) we have .-
3,0 = 00e) + e(ji"(t)+£l]1'(t)) +0(e?) (5.26)
3 (2) = .L':('r) + s(ji'(t)+£¢(‘t)) +0(eD). | (5.25)

Higher order terms can be determined in an analogous manner, or
using techniques [12,13] which are computationally more efficient. Recalling

(4.5), (4.12), (4.14), and (5.6) we consolidate (5.24) and (5.25) into

= <+ (S.
J TJﬂ SJY {5.26)

which represents the two-time expansion of J for all t. For t large, t+=, the

L-terms vanish anZ the equilibrium (infinite horizon) cost expansion is

o 1 1 2,..2 2 3
= + + + + +0 .
J TJn e(TJn SJY) € (TJn SJY) (e™) (5.27)
o_=o0o 1 =1 1 =1
where Jn-Jn, J’n-Jn, JY-JY, etc. are uniquely defined as the equilibrium

solutions of (5.15), (5.19), (5.21), etc. We see that aggregate cost TJ: is
an 0(c) approximation of the full cost J. This fact serves as motivation for

the two-time-scale algorithm developed in Section 5.4.

5.3. Near Optimal Control

The infinite horizon discounted cost problem (5.1) and (5.2) is
well defined and can, in principle,be solved using any one of a number of
methods [15,44,53]. In all these methods, the computational burden can be
prohibitive for large chains. However, in singularly perturbed models
to reduce computations and improve convergence of design algorichms [7], a

reduced or unperturbed (e=0) problem is solved. The resulting policy

St aemtialt e et a VUL P T PR R - - - . " DY it
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obtained is termed ''near optimal.” In this section we define the "reduced
problem" and in what sense the resulting policy is near optimal.

For the purpose of intuitively understanding the near optimality
results, let us first consider a special case of the more general problem
outlined in Section 5.1. Assume that the control parameter u is a scalar and
that u can take on any value in a segment UB. The Hamilton Jacobi equation

for this problem is

0 = min (AL 4 8%()) I+ £(w)} = min{p(u,e)} (5.28)
uEy el
o o
where
f(u) = [£(1,u(1l)),...,f(n,u(n))] ) (5.29)

and Ba(u)"B(u)-aI. We now approximate the full optimal control problem
(5.28), (5.2) for €>0 by a simpler problem defined at e=0. 1In (5.20) we
cannot let £= 0, but if we substitute (5.27) into (5.28),

0 = min{A(u)SIE + B> (u)TI" + £(u) + € [ACu)STZ + B* (u)TIL + B (u)sI1]
) Y n Y Y Y

+0(e%)) (5.30)

we obtain at ¢ =0 the "reduced" optimality condition

0 = min{A(u)SJt+B%(u)TI%+ £(u)}. (5.31)
] Y n

We denote a control minimizing (5.31) by u, - To avoid technicalities we
assume that the derivatives Au’ Bt, and fu of A(u), Ba(u), and f£(u) are
continuous and that the unique minima for each row in (5.31) are reached in ;

the interior of Uo’ that is un satisfies

A (u)sit + B®u )T + £ (u) = 0. (5.32)
u n' Ty u' n’"Tn u' n

PP T in -1
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Note that with u, given, the substitution into (5.31) yields
1 a o

A(un)SJ_Y + B (u)TJn + f(un) 0 (5.33)

which, when multiplied by V(un) and W, respectively, results in

a o
+ = .
V(un)B (un)TJn V(un)f(un) 0 (5.34)
WA(u )SIt + WB%(u_)TI° + WF(u_) = O. (5.35)
n Y n n n

Conditions (5.33), (5.34), and (5.35) uniquely determine U TJ:, and SJ#. To

see in what sense u is near-optimal, we represent the optimal control u* for

(5.28) in the form
u* = o + el + 0(2). (5.36)

Then we substitute
AGY) = () + cau(®ul + 0(e?) (5.37)

and similar expressions for Ba(u*) and f(u*) into (5.33), that is into

1%
Y )]

+0(e?) (5.38)

* * * *
0 = A(u*)s.ri' +B°‘(u*)m: +f(u*)+e[A(u*)SJ$ + 8% (u*) (TJi" +5J

and obtain
% * % *
0 = A(uo)SJ_](' + 8% ()1 +f(u°)+e{[Au(u°)SJ3{' + 82 (u)1s? +Eu(u°)]ul

n% % *
+A(u°)SJ; +B(:(u°)(TJi +SJ3{' )} +0(e2) = u(e). (5.39)

we see from (3.31), (5.33), and (5.39) at =0 that =y and, hence, Jiu

Y%

-

o o , - :

and j, are determined by u = un. Next we note that the c~-term in (3.39) is

zero for all =32 0 because u® is optimal for all > 0. This term involves the
. : 1 . - . ;

unknown first order optimal control term u . However, by (5.32) the expression

% %
multinlving ul is zero. Thus the cost terms SJ; and TJ& are uniquely

. ; - 1
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determined by u’. This establishes that when  is found, the series (5.27)
for the optimal cost is matched up to O(ez). Thus v is near optimal in the

sense that

I(u*) - 3 ) = 0¢ed). (5.40)

This property that each term in the optimal control series matches two terms in
the optimal cost series is found in other control problems {58].

For the more general problem posed in Section S.i, it car be shown
that when u, is unique, (5.40) holds without the differentiability require-~
ments on A(u), Ba(u), and f(u) needed in (5.37). This has been shown in [25]
based on the theory of extremum in quasi-differentiable functions [60]. The

basic result of [60] wsed in ([25] is that

o
3ule) - 2P(u ,e) - A(uo)SJZ + B“(uo)(TJl4.le) (5.41)
set + Y n Y
oe - 1e=0 ae e=0

where u(e) and ¢v(u,c) are defined in (5.39) and (5.28), respectively. (5.41)
shows that the 0(e) coefficient of the expansion in (5.39) is dependent only
on u°. Thus, Js, Ji, and Ji are determined uniquely by uo. For the special
case assumed in the above deviation we showed this explicitly by observing
that in (5.39) the only nonzero part in the coefficient of € was given by
(5.41).

When the reduced policy un is not unique, then (5.41) mav not hold

and we can only guarantee
J(un)-J* = 0(¢e), (5.42)

although in practice we could expect much greater accuracy. The importance
of the reduced problem will now be used to develop a decentralized optimiza-

tion algorithm for the infinite horizon discounted cost problem.

N
e shensinasiinnt ‘M—L-‘“‘—‘ﬂ'-‘*—‘”*“*l
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II 5.4. Decentralized Optimization

In this section a decentralized algorithm is presented for obtaining
a near-optimal control policy to the singularly perturbed controlled Markov
'! chain problem of Section 5.1. Since the algorithm is based on value
jiterations, it is more convenient to work with the discrete-time version of

(5.1), namely

o A(u)
: p(k+l) = p(k) (S~ + B(u) + 1) (5.42)
e with discounted cost
Tkl
, J = min E I £(x, , 5.43
. (x ) 3 E ksop (x,,u(x)) ( )

where 0<p<1. The optimality condition becomes

v

* A(u)

= min o{=== + B(u) +I)J* + f(u)}. (5.44)
=)

J

J* is the n-dimensional optimal cost vector where JI is the cost if the
,. process starts in state i, for i=1,...,n.
For any given policy cost J can be found by solving the set of n

linear equations

e

J-p[(§+B+I)J+f] (5.45)
which we can rewrite as
J I+VBT VBS J Vi
n n
= o + 2 (5.46)
A I_J WBT w(% + B+I)S|{J we
. Y € YJ

where J =VJ, J =Wl as in (5.6). Substitution of J1=J:+O(»:) and JY=J$+O(.-:)




__________
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into (5.46) gives Js-o and

J‘; = p(I+VBT)J: + pVE (5.47)

and hence, -

J= TJ: + 0(e) (5.48)

which agrees with (5.27). The form of the aggregate cost equation (5.47)
suggests that Jﬁ can be considered as the optimal cost J: for an aggregate

problem whose optimality condition is
J* = min p((I+V(u)B(u)T)I*+V(u)f(u)]. (5.49)
N weu n

An optimization algorithm known as the Jacobi iterations [15,44], when applied

to (5.44) and (5.49) is, respectively

7L o nin p{(i(s“—) + B(u) + D)3+ £} (5.50)
u

J:*'l = min p{(I+V(u)B(u)T)J:+ V(W £(uw)}. (5.51)
u

In the aggregate problem (5.51) the dimension is reduced from n to N, but a
difficulty is that it is not obvious how the control obtainmed in (5.31) depends
on the original states. To avoid this difficulty, we rewrite (5.51) in the
form

I o nin o (V(W [(I+B(u))TJ:+ E(W ]}, (5.52)

n u
1
. %
and interpret the term in the brackets as the cost g (u) of an average cost-

per-stage problem. It is an n-column vector which can be partitioned into ¥

3

1

< -
subvectors g, (u”) corresponding to strongly interacting groups of states,

3 g 2 282

Adanct o
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described by decoupled fast chains Aj(uj) where uj denotes controls for states -
in j-th group. The solutions for the average-cost-per-stage problem for each

fast chain exist under the ergodicity assumption on Aj(uj). They can be

found using algorithms such as [54,55]. Then (5.52) is rewritten in a

decentralized form

getL . mijn p[vj (uj)sg(uj)] .33)

n

3 uw
for each group j=1,...,N. Therefore, if at step k a "coordinator’” obt:
the results of (5.53) calculated locally in each group, its role is to cu..-

k+1
n

solidate the result in the form of J . This information - is then used to

form the new fast cost gk+l(u) according to

1

sk+l(u) = [1+13(u)]TJ1,:+ + £(u). (5.54)

Graphically, this algorithm has the decentralized structure in Figure 5.1.

The aggregate Markov process assumes that the '"fast chains' have
reached their steady state probabilities Vj. Each aggregate iteratiom (5.53)
is in fact an infinite horizon problem for the '"fast chains.”" These infinite
horizon minimizations are in the form of N separate average cost per stage
problems with respect to the costs gk(uj), j=1,...,N. These costs contain
not only the instantaneous subsystem cost f(uj), but also the cost contribu-
tions due to coupling to other subsvstems. It is the latter that enables the
fast problems to be solved independently. Other iterative algorithms, such as
Gauss-Seidel [15] can be decentralized in a similar fashionm.

We can now show that the limiting (k- =) policy u, in (5.53)

satisfies (5.31) with ¢ 33%33 thus establisheing the near optimalitv of u, .
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m Lemma 5.1: The policy obtained im (5.53) as k—+= satisfies the reduced
:; optimality equation (5.31). Thus, if the policy o is unique, then

J(un)-J*=0(52).
Proof: From [55], we can express.the limit in (5.53) as N average cost per

stage optimality equations of the form

3, 1=mino(a (w)e, +g(ud)) (5.55)

j o] 3 3

. b h j h|
= mljn p(Aj (u )cj+le(u )TlJnl+ +BjN(u )‘I'NJnN+TjJ j+f(u )) (5.56)
u
or in vector form
TJ = min p(ACu)e+B(u)TJ +TJ_+ £(u)) (5.57)
n u n n

where ce R" are dual variables as defined in [14,55]. When u= U (5.57)

becomes
= + + + . .38
TJn p(A(un)c B(un)TJn TJn f(un)) (5.58)
Premultiplying by W we obtain

= W + + Uf .
0 A(un)c WB(un)TJn (un) (5.59)

L) which, from (5.353) uniquely defines c as SJi. Thus, letting p==i%;, a>0,

(5.57) takes the form

P a1J? = min{A(u)SJ}(n(um:«» £(u)} (5.60)
u
which is equivalent to (5.31), thus from Section 5.3, the 0(32) optimality or
the cost using policy u, is established. In concluding this chapter, several ;
4

useful properties of this algorithm should be cited.

1. Yo svstem of linear equations of anv order need ever be solved.

-
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Storing "aggregate" iterations of the form BT rather than just
B reduces the number of computations and memory requirements.
The algorithm is independent of the small parameter e. Thus,

in general the algorithmic stiffness of the high order problem
has been removed.

Fast chains perform their local minimizations in parallel. Fast
costs are updated on the slow time scale by receiving only

J:H'EIRN from the aggregate coordinator.




cl]c_ =qmin Vl(ul) gk(ul)

g

= =

u

. N, k, N
man VN(u )g (u)

Figure

5.1.

Gl? =min V, (u? )gk(uJ)
J j 3

U

Two-time-scale algorithm for discounted cost problem.
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" CHAPTER 6

THE AVERAGE COST PER STAGE PROBLEM FOR CONTROLLED MARKQV CHAINS

6.1. Introduction

In many controlled Markov chain problems the discounted cost is
not a physically meaningful measure of system performance. In such cases the

average cost per stage [55,44,15] is commonly used. In discrete time, this

- cost function takes the form
_ 7= min lim =i £ F £(x,u(x)) (6.1)
.__ WU To<e 1+T . k=0 Ko Ui5e
where U and f(i,u(i)) are defined as in the discounted case.
In this chapter we again us;-the two-time-scale property of (5.42)
N to develop a computationally efficient algorithm for obtaining a near optimal
control policy u for the problem defined by (5.42) and (6.1).
In Section 6.2 the optimality conditions for the average cost per
ll stage problem are preserved and the cost for a fixed policy decomposed into

e

fast'" and "aggregate" components.

In Section 6.3, we consider the solution to the problem (6.1) as
=0 in (5.42). This results in a reduced problem for which a near-optimal
policv is obtained.

In Section 6.4 a decentralized algorithm is developed for obtaiaing
a near optimal policy in a computationally attractive manner.
Finally, in Section 6.5, an example is given iilustrating the decen-

tralized algorithm.

L o _ |
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6.2. Decomposition of the Cost for a Fixed Policy

In this section we.Fssume that the control policy u is fixed and we
wish to obtain the corresponding cost (6.1). By using the two-time-scale
property of (5.42) we will attempt to decompose the cost J into "fast' and
"aggregate" components. This will lead us ot the concept of the dual
variables c€R", and their decomposition into "fast" and "aggregate'
components. These results will be of importance in the next two sections.

Under the assumptions of Chapter 4 and Section 5.1, (6.1) can be
written in the convenient form

J = min p(u)f(u) (6.2)
uEy

where f(u) is defined in (5.29) and P(u) is the n-dimensional row vector of

steady state probabilities defined by

B = Bw A 4 gy + 1)

or
0 = 5w AN 4+ B(y)) (6.3)
and n
EAACERS (6.4)

Note that unlike in Chapter 3, here J is independent of initial state and is

thus a scalar. Hence the optimal cost per stage is the same for all states.
Assume that there are only a small number of policies from which

to choose. In this case, it mav be simpler to evaluate (6.2) for each polic-

and pick the minimum. TUnfortunately, (6.3) usuallv represents a large set

i~

of ill-conditioned linear equations. However, as we have shown in Chanter %,

5(u) can be written in the form

P(u) = n(u)V(u) + Y(u)W. (5.3
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II Then, for a given policy, (6.2) takes the form

J = nVf + YWE

= nf + Yf (6.6)
n Y
&
' where n and Y can be computed efficiently using the asymptotic series solution
developed in Chapter 4.
- As an alternative to this approach, consider the optimality equation
for the average cost per stage problem
- J*1 = min{m+ B(u))c*+ £(u)} (6.7)
= €
uel
. where J* is the optimal average cost per stage and c*er" the optimal dual
- variables as defined in [55]. Given a policy we could solve (14]
|' Y

31 = A4 e + £ (6.8)

for J and ¢ and pick the policy with minimum J as optimal if the number of
policies is small. Again, to avoid solving this usually large set of possibly

‘7
ill-conditioned linear equations (6.8) we premultiply (6.8) by [ﬁ}' Define

cn = Ve, cY = We (6.9)
and obtain
J1 VBT VBS C VE
= i+ . (6.10)
0 eWBT W{(A+€B)S CY WE

Expanding J, Cq, and CY in asymptotic power series of the foram
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J-J°+EJ1+ G (6011)
c =c®+ect+ ... (6.12)
n n n
c =c®+ect+ .- (6.13)
Y Y Y
we obtain C:-O, and the remaining terms defined by
J 1 = vBTc® + V£ (6.14)
[« Bt n
1 -1 o
cY = - (WAS) (WBTCn+Wf) (6.15)
. 1 1
J., 1 = VBTC_ + VBSC (6.16)
1= n Y
02 = -(WAS)'l(wn'rcl+wsscl) (6.17)
Y n Y
J. 1 = vBTck + vBsck (6.18)
k = n Y
c$+l = -(WAS)-]'(WBTc:+NBSC$). (6.19)

(6.14)-(6.19) can be solved on a reduced order basis. Note that (6.14), (6.16)...

(6.18) have more unknowns than linear independent equations. One way around

this problem as recommended in [l14] is to set one of the C§ 's equal to zero
i
for all k. Once this is done the remaining C: 's and Jk can be calculated
i
uniquely.

Once C: is found, Ct+1 is uniquely determined. This property of non-

. k . ; . ; . . .
uniqueness of C“ is to be expected since if C* is the optimal dual variable in

(6.7), so is C*+Sl, ¥YS€R. Thus, if we follow the above procedure in

k

computing J Cq, and CF, we will obtain the unique average cost per stage

k’
given by (6.11) and the dual variables C given by

C=T7TC + SC (6.20)
n Y

PP O TPy el ol R e P Y — o
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. will be unique to within an additive vector of the form §1, S€R. Using

either (6.6) or (6.10) we can efficiently compute the avarage cost per stage

for a fixed policy.

!- Before concluding this section, it is interesting to note that
(6.14) is of the form of an "aggregate' average cost per stage equation with

transition matrix I+ VBT and instantaneous cost VE. This idea will be of

f? significiance in Section 6.4.
6.3. Near Optimal Control
The problem defined by (6.1) and (5.42) can, in theory, be solved by
i’ a number of different methods [14,54,55]. However, analogous to Section 5.3
for the discounted problem, we wish to take advantage of the singularly
;' perturbed model of (5.42) to obtain a reduced or unperturbed (e=0) problem.
I' In this section we define the "reduced'" average cost per stage problem and

establish in what sense the resulting policy is near optimal. The results
of this section are obtained in much the same way as the near optimality

results of Section 5.3 for the discounted cost problem. Therefore, to avoid

redundancy, many references will be made to that section.
Again, for intuitive understanding consider first the special case
where u is a scalar and takes on values in a segment Uo‘ The optimality

equation for this problem can be written in the form

. 0= min (A8 4 Bu))C+ £(uw)-T 1} = min (v (u,e)} (6.21)

- wey
uEUo o

where f(u) is defined in (5.29). For any policy, C and J have the form (6.11)
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and (6.20). Substituting these forms into (6.21) we obtain

0 = min {A(u)SC$+B(u)Tc:+ £(u)-1°1

uel
o

+e(A(w) sci +BCu) (TCH+ Jcb.-Jl_l_) +0(ed)}. (6.22)

Thus, the optimality condition for the reduced problem becomes

0 = min {A(u)SC¢+B(u)Tc:+f(u)-Jol}. (6.23)

uel
o

Again denote the control minimizing (6.23) as u - Assume that the derivatives
Au’ Bu’ and fu are continuous and that the unique minima for each row in

(6.23) are reached in the interior of Uo’ thus

1 (o]
+ -+ - .

and with v given, we obtain

3°1 = A(un)SCi' +B(u)TC + £(u) - (6.25)

Premultiplying (6.25) bv V(un) and W results in
0o o
= + VvV .
J°1 V(un)B(un)TCn \(un)f(un) (6.26)
1 o
= + + W .27
0 WA(un)SCY WB(un)TCn f(un) (6.27)

which are in the form of (6.14) and (6.15) and hence can be solved uniquely

for Jo, sci, and TCZ. To see in what sense u, is near optimal, let the
optimal control of (6.21) u*, have the series form (5.36). Then substitute

(5.37) and analogous expressions for B(u*) and £(u®) into (6.22) and obtain
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0= A(uo)SC$ +Bu®)TC® + £(u®) - J°L+¢( [Au(uO)SCi' +B_(u)TC + £_(u°) Jut

n
+A(u°)SC$+B(u°)(TC:+ scf(') -3ty + 0 = (o). (6.28)

%* * *
From (6.25) and (6.23) at e=0, uP--un and thus J° , C: , and C# are deter-

mined by u . Next, note that due matching, the e-term in (6.28) is zero
Ve 2 0 since u* is optimal Ve > 0. This term involves the unknown first order
optimal control term ul. However, the expression multiplying u1 is, by (6.24),

1% 2% 1%
identically zero. Thus, J , SCY , and TCn are obtained from

~—

' = A(uo)Sci + B (1€} + sc}r) (6.29)

and hence are uniquely defined by u°-tﬁv Therefore, when @ is found, the

series for the optimal cost (6.11) and optimal dual variables (6.12) and

(6.13) are matched up to O(ez). Thus un is near optimal in the sense that
ICu) = 3* = 0(e?) (6.30)
% 2

For the more general problem posed in Section 6.1, it can be shown [60] that
when u, is unique (6.30) and (6.31) hold without the differentiability require-
ments on A(u), B(u), and f£(u). This discussion is given in Section 5.3 and

will not be repeated here.

6.4. Decentralized Optimization

In Section 6.2, the cost for a fixed policv was decomposed into
"aggregate” and ''fast" components. This enabled reduced order computations

for finding the cost. Thus, for a small aumber of policifes, the cost for each
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policy computed and the optimal chosen. When the number of policies is large
or infinite, an exhaustive search for the optimal policy is impractical and
one of many iterative policy improvement algorithms must be used [14,54,55].
In this section we present a decentralized algorithm for computing a near
optimal policy to the average cost per stage problem posed in Sectiomn 6.1.
The s;ructure of the algorithm is similar to that of Section 5.4 for discounted
problem and hence offers the same computational advantages.

For evervy policy u€ U, p(u) can be written in terms of the
"aggregate' and '"fast" states as in (6.5). Substituting (6.5) into (6.2) we

obtain

J = min{A(u)V(u)E(u) +Y (WWE(u)}. (6.32)
WU

However, ¥(u) is uniquely defined by

T(u) = -e7 (W) V(u)B(u)S(u) (W(A(u) +€B))S(u)) ™+
= —cF(u). (6.33)

Thus, (6.32) takes the form

J = min{n(u)£(u)} (6.34)
uEly

where

£(u) = (V(u)-cF(u)W)E(u).

Thus, the control problem has been reformulated in terms of the aggregate

N , . . .
states "€ R, For a given policy we mayv compute J from (6.34) or bv solving

the following set of linear equations for J and the aggregate dual variables




111

J 1= (V(0)-eF(u)W)B(u)TC, + £(u) (6.35)

where (V(u)~eF(u)W)B(u)T is the perturbed aggregate generator. Then the

optimality equation for the aggregate problem (6.34) becomes

J 1= min {(V(u)-eF(u)W)B(u)TC_ + E(u)}. (6.36)
ueU* n

Assume now that for am arbitrary policy uk we have obtained the corresponding
aggregate dual variables C:. In most iterative algorithms [14,59,55]}, to
improve the policy uk, the following minimization is required

h(cX) = min{ (V(u)-eF(u)W)B(u)TCS+ £(u)}. (6.37)
n U n

In the limit as k~+ =, h(C:)*.Il. The elements of the aggregate generator and
instantaneous cost are complex nonlinear functions of the controls for many
of the original states and the minimizatiom in (6.37) is difficult to carry
out if not impossible. Thus, we have saved little by solving the low order
aggregate problem (6.36) as opposed to (6.7) unless a further simplification
is made. By letting €+ 0 in (6.37) we obtain

h(C%) = min{V(w)B(w)TCK+V(w)£(w)}. (6.38)

n €U n
As expected, this optimization problem is equivalent to one we

obtain if we were interested in minimizing only the Oth order aggregate cost
term in (6.14). 1In other words, in (6.38) we are seeking a near optimal policy
that satisfies the reduced optimality equation

J = mia{V({u)B(u)TC +V(u)f(u)l}. (5.39)
uEU n

The analogy with the discounted problem of Section 5.4 should now be clear.

We proceed to interpret the minimization operation in (5.38). The need to

hetde inthmindud - -----u-n-n-ﬁ----------n-----.-.-n-n-a-n-t-n-n--‘
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know V(u) as a function of u and the inability to disaggregate the policies
obtained in (6.38) back to the original states makes the minimization of
(6.38) impractical in its present form. This difficulty can be avoided by

rewriting (6.38) in the form

h(ck) = min{V(u) [BCu)TCE+ £(u)]}. (6.40)
L= n

As in the discounted problem, partition u and f(u) according to the

fast subsystems

:q}j Tf(ul)-
u2 f(uz)

u= |77 f(u) ==~ - -} . (6.41)
o £ |

To more clearly see the form of the vector B(u)Tc:+-f(u) we note that for a

three class system it takes the form

- —

K
1

1 1 k 1 k 1
Bll(u )TlC + BlZ(u )TZan + C13(u )T3Cn3 + £(u”)

k

2 k 2 k 2
n. F By (u)T,CH + By (W)T,C0 + £(u) | (6.42)

2
B,, (u")T,C
21 1 1 nz 3

3 k 3
+ 333(u )T3Cn + £(u )_

3 k
+ B, ,(u)T.C
32 2 n, 3

3 k
LB:}l(u )Tlcnl

It is crucial that each row i of (6.42) is a function of onlv one control
. . . X - , k .
u(i), i=1,...,n. We can interpret each row of (6.42) as a cost g (u(i))
, k - . .
depending on a single control for a given Cn. If we partition this cost

according to the fast subchain dimensions we obtain

Aal
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sk(ul)ﬂ
. g
g (u) = ] . (6.43)
L gk(uN) -
This, (6.40) takes the form
h(C:) = nin{V(u)g<(u)}. (6.44)

uEl

However, since V(u) is block diagonal, (6.44) can be written as

~

hl(cﬁ) = min {Vl(ul)gk(ul)} (6.45)
ulEUl
hN(Ck) = min (V. (M8, (6,46)
n N N N
u €U

This formulation points out the possibility of decentralizatiomn, because
(6.45)-(6.46) are average cost per stage problems for the fast chains A;(ui)
with respect to the instantaneous cost g?(ui), i=1,...,N which can improve
the controls at a '"local" subsystem level using '"local" costs gk(ui). The
gk(ui)'s are updated on a slower time scale at the aggregate level which
assigns the new C:+l.

Once the vector h(C:)eRN is computed, different algorithms [14,54,53]
use different means to update the dual variables C§+l. A recently develored
algorithm for this problem is due to Varaiva [553]. We now use this alzorithm

to illustrate the hierarchical structure of the decentralized optimizations

(6.45)-(6.46).
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The first thing we must establish is that the problem we are
attempting to solve is a well defined average cost ber stage problem

satisfying all the conditions necessary for Varaiya's algorithm to converge to

the optimal policy. The problem we are trying to solve is summarized in (6.39).

First note that I+ V(u)B(u)T is a well defined transition matrix whose elements

~depend continuously on u€U. Second, under the ergodicity assumptions on

(5.42), I+V(u)B(u)T contains a single ergodic class Yu€U. And finally,
V(u)£(u) is a well defined vector of instantaneous costs whose elements depend
continuously on the vector u. Thus, the problem satisfies the conditions in
[(55] necessary for the algorithm to converge to the optimal policy. We now
review Varaiya's algorithm for the high order problem (6.7).

Given an arbitrary Co, define h(Co) as the vector of values resulting

from the n pointwise minimizations

h(c®) = min{(é%?l + B(w)C°+ £(u)}. 6.47)

u€l

The algorithm then proceeds as follows: Let

h(c®) = max h,(c®) (6.48)
i 1

h(c®) = min h,(c%) (6.
i 1

&~
\O
~

and find Cls C°4-Atf(C°) according to a discretization of the differential

2quacion [56]

dc 1 T . -
T h(c)-; (h(c) 1]l = t(c). (h.30)

Then Cl is used to obtain h(Cl) as in (6.47) and the cvcle continues.

. . . .—.k k .
Converzence is monotonic and can be '"measured" since h(C)-h(C)—-0U ad k—=.

e B
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h Il We now apply this algorithm to solve (6.79). For a given initial

C:, define h(C:)GRN as

! h(c®) = min{V(u)g®(u)} (6.51)
" wev

F T

. where

; ) = B(u)T0: + f(u). (6.52)

In component form (6.51) becomes

P —

by (C0) = min {Vl(ul)go(ul)} (6.53)
uleU1 R
hy(C)) = min {VN(UN)gO(uN)}. (6.54)

uNEUN
Each 'fast" chain average cost per stage minimization in (6.53)-(6.54) can
be solved in parallel using, for example, Varaiya's algorithm. The results
of the minimizations gives

h () L= amin {a ()t +g%Wh)

11
u €U (6.55)

hy(C) L = min (ag (M eV + g%}

uNEUN

. O,
where C'€R l, i=1,...,N are the dual variables during the fast optimizatioms.

o . L
Note that hi(cn) is the optimal average cost per stage for fast chain i under

[nd}

. o, 1
instantaneous cost g (u”), for i=1,...,N.

Let

E(c‘;) maz h(C:) (6.36)

1

B(C)) = min h(CD) (6.57)

1
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and find Ci==cz-+Atnf(C:) according to a discretization of the differential

equation

de

LI 1 =
5 = h(c) -5 [h(c) 111 = £(C,). (6.58)

Use Ci to update the fast cost

glu) = B(u)TCi + E(u). (6.59)

Intuitively, the C:'s "distribute'" information about the '"motion'" of the total
system relative to each fast subsystem. The aggregate interactions, B(q)T in
(6.59), are "weighed" accordingly and the updated cost gl(ui), i=1,...,N is
obtained. It is this component of the cost gl(u) in (6.59) that allows the
optimizations of (6.53) to be carried out independently. Next, (6.51) is

solved for h(Cl) given gl(u) and the cycle continues. Convergence occurs when
-k k
R(c) -h(Cc)) <&

where § is some design tolerance. Thus, the aggregate serves as a
"coordinator" passing and receiving the necessary information between sub-
systems allowing the subsystems to compute "local" controls that are
"2zlobally" near optimal. Graphically, the aggregate coordination scheme is
given in Figure 6.1.

We now show that the limiting policy (k- =) in (6.35) satisfies
optimality equation (6.23). Thus, the near optimalityv results of Section 6.3
nold.

Lemma 6.1. Let u, be the near optimal policy obtained using the two-time

scale algorithm. Then if u_ is unique, J(u ) satisfies (6.30).




u

1, k, 1 }

hl(C:) -miln{vl(u g (u)

k
» h,(C) c

hN(C:) - miNn{vN(uN)gk(uN)} )
u

k+1

4

h

k
hN(Cn) Aggregate

Coordinator

Ck+l
n

4

k
hy(c)
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h. (C5) = min{V
J n N

o’

3

(uj)gk(uj)}

hz(C:) = min{ Vz(u

2y gk )}

Figure 6.1. Two-time-scale average cost per stage algorithm
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Proof: When the algorithm coanverges, (6.55) becomes

J(u) 1 = min {Al(ul)cli-g(ul)}
" et
“ (6.60)

N, N N
J(un) 1= ;;:N{An(u )C +g(u)}
u
or in vector form
J(un) 1= min{A(u)CF4-g(u)} (6.61)

uey

where

C.=|"""ler (6.62)

is the vector of dual variables resulting from the fast subproblems. We now

show how CF relates to the expansion terms of Sectiom 6.1.

From (6.59), (6.61) becomes

J(un) 1 = min{a(u)Cp+B(W)TC_ +£(u)? (6.63)
uEU n
and at u=u_,
n
J(u ) L= A(u )Cp + B(un)TCn + f(un). (6.64)

Prenmultiplving by V(un) and W we obtain

J(un) 1l= V(un)B(un)TCn + V(un)f(un) (6.63)

= | + W 3TC vE .
0 \IA(uq)CF IvB(un) . + ‘vt(uq) (h.96)
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which, from Section 6.2, uniquely defines CF as sci and Cn as C:. Thus,

(6.63) becomes

J(u) 1 = min{A(u)SC> +B(u)TC® + £(u)} (6.67)
n wEl \ n

which is equivalent to (6.23). Thus, if u, is unique, then J(un)-J*l-O(ez).
The attractive computational aspects of tha algorithm are the same

as the algorithm for the discounted problem and are listed at the end of

Section 5.4. We close this chapter and this thesis in the next section with

an example.

6.5. Example - Minimizing the Average Cost Per Stage

In this section we given an example of applying the algorithm pre-~
sented in Section 6.4. The controlled Markov chain we will be considering has

the following state transition matrix:

45 | .45 | 0 .05 .05 0 0 o | o
27 | .36 | .27 .03 .04 .03 0 0 o |
0 | .72 | .18 0 .08 .02 0 0 o |
Su | Su | 0 |.45-.5u .45-5u] 0 .05 .05 o |
| o3u | e | 3w | .27-.3w | 36-ubw|W27-3u| .03 | .04 | .03 |
0 | . | .2 0 |.72-.8u!.18-.2u| 0 | .08 i .02 |
E 0 { o o | su | w0 5(1-2) ¢ 5(10) .0
! o | 0 I TR S VI ST RS- T (O G IR JCE IS IC T
o o o0 oo b s | .z 0 | .8(1-u) i .2(1-u)
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where the states are defined by
X)X | Xy | X, | X | X | Xy Xg | Xg
G{ 2123211711110 ]0]O0 (6.69)

The control problem can be visualized as one of maintenance scheduling. From
(6.69) the state of the process is defined by the variables G and D. G
corresponds to the number of power generating units available while D
corresponds to the demand in terms of generating units needed. Markov models
of this type are common in optimal resource scheduling problems [22,59].

The units have a common failure rate over which we have no control.
On the other hand, we can control the rate of repair. By increasing the repair

)

rate, the probability of repairing the gemerator during the next unit time

interval, u, improves.

The higher probability of repiar is obtained only by increasing the

system cost due to assigning labor, new parts, etc. Therefore, the control
variable will be the scalar quantity u taking values in the closed interval
.02<u<.2. When the process arrives in one of the nine states identified in
(6.69), the amount of maintenance scheduled is proportional to u. Hence, the 3

control problem is to find the policy u(G,D) that minimizes the average cost

P

per stage (6.1) with instantaneous cost

AL R

£(G,D,1(G,D)) = [(D-6) 1" +K(u(G.D))" (6.70)

<+ + 0
where (b) =max(0,b). This cost is composed of two terms: [(D-G) |~ penali:zes ]

2
for not meating the demand while K(u(G,D))” penalizes maintenance costs. Thus,

the problem is well defined and possesses a nontrivial solution. ]
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Note that (6.68) is of the form %+B+I where

-709 ~03 ~ 0 )
g .054 -.108 .osa:
~ 0 146 -.144
o L, —-—— - = - - -
1 B | -.08+ly  .09-.1u 0 |
. A= ! .054-.06y —-.108+.12u .osa-.osu:
: ) .144=.16u .144+.16u)
- e e e e e e e e w e |wm o e e e - - -
| = d+.1p W1-.1u 0
- | .06-.06u -.12+.12u .06-.06u
i : 0 .16-.16u ~-.16+.16y
.i (6.71)
and
-1 0 ol .05 .05 0 i
]
-1 0 .03 .04 .03 I 0
! |
0 -.11 ¢ .08 02 |
- wm = wm == —l— — m - - wm e e - -— ww -
|
, Sy 54 0 ) -u=.1 0 0 ,.05 .05 0
B=|.3u 4w .3, 0 -u=.1 0 1.03 .04 .03 (6.72)
[
l 0 8 .2u! 0 0 -u-.1 | 0 08 .02
A T — e e = -
- - |
l Su .5 0 [ ~H 0
00 : 3u AT 3u | -u
i I o .8u 2 0 0 -

where €= .2 in (6.68). First the problem was solved using K= 30 in (6.70).
Using the algorithm of Section 6.4, the following near optimal policy u  was

obtained




o

.02
.02
.02
111
111
.09
.162
.142
.086

L

-y

-l

(6.73)

For the purpose of comparison, the optimal policy u* was computed for several

values of € including e= .2,

These results are given in Table 6.1.

Table 6.1. Optimal policies and cost for K= 30
€ .5 .2 .15 .1 .05 .01
.02 .02 .02 .02 .02 .02
.02 .02 .02 .02 .02 .02
.02 .02 .02 .02 .02 .02
.092 .104 .106 .108 .110 .111
u*(G,D) || .107 111 111 111 111 111
.178 111 .107 .102 .097 .092
.088 .126 .134 .143 .152 .16
.138 144 144 .144 144 .143
.2 .149 .136 .121 .104 .090
J: .65776| .671 .67145] .67095| .66913| .66648
J(un) 69722 .6811 .67767] .67399f .66999! .66634
Tabla 6.1 clearly illustrates the convergence of u® to u, as <—=0.
2
Table 6.1, note that J(uw)-Js <e for all values of ¢.

Also in

To see the effects
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u of changing the cost coefficients in (6.70), let K=20. The near optimal policy

un is then -

.02
B .02
.02
.140
u =|.140 (6.74)
- .108
: .200
.190
 .102

o

and the optimal policies for various values of € given in Table 6.2.

Table 5.2. Optimal policies for K= 20

€ .3 .2 15 .1 .05 .01

.02 |.02 |.02 [.02 {.02 |.02
.02 |.02 |.02 |.02 |{.02 |.02
.02 .02 [.02 [.02 |.02 [.02
u*(G,p) |.114 | .129 | .132 | .135 .138 | .140
.135 | .139 | .140 | .140 | .141 | .141
.165 | .140 | .133 | .126 | .118 | .110
.116 | .167 | .178 | .191 | .200 | .200
.185 | .192 | .193 | .193 | .192 | .191
.200 | .200 | .180 | .158 | .122 | .108

These results confirm our intuition in that lower values of X result in more
maintenance scheduled (higher values of u(G,D)). From a computational point
of view, the advantages of the two-time-scale algorithm over the standard

method were significant. For this example, these advantages can be summarized

PO S NG PR ittt ‘**‘**“‘h—d
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as follows:
i) Memory requirements - The ability to aggregate interactions in
the form of BT combined with having to solve only subsystem
problems reduced on line storage requirements by about a 3 to 1

ratio.

"

—

ii) Decentralized computations - The computations are performed in a
decentralized manner allowing distributed computing when needed.

ii1) Ill-conditioning - As € becomes smaller, the orders of magnitude

e iv

difference between éé?l and B(u) causes the high order problem to

converge very slowly. The two-time-scale solution is independent

of ¢ and converges rapidly.

iv) Computation time ~ Due to both the reduced dimension of the sub-

system problems and the improved co;;itioning of the two-time-

scale algorithm, CPU time was significantly reduced. For = .2

the reduction in CPU time was about 3 to 1, for e = .1 about 6 to 1,

and for €= .05 about 12 te 1.

In conclusion, this simple 9th order example has clearly demon-
strated the usefulness of the two-time-scale algorithm. For more complex

controlled Markov chain problems [21,59,62], the advantages of this algorithm

will be of even greater significance.
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CHAPTER 7

CONCLUSIONS

The need to analyze and control large scale systems is a research
area that will always remain rich in potential. More demanding performance
leads to more complex models necessitating the research and development of
improved analysis and design techniques. This thesis has helped to unify
one area of such research and open up another potentially promising new area.

In Chapters 2 and 3 we considered deterministic linear time-
invariant systems and the existence of a "two-time-scale' property. It was
shown that the reduced order modeling obtained through singular perturba-
tions was directly related to dominant left and right eigenspace power
iterations. This led to a unified design methodology for reduced order
modeling and control of two-time-scale systems from which many previous design
methods were shown to have been special cases.

In the remainder of this theéis, we considered stochastic systems
which can be modeled as large finite state Markov processes. The 'weak' and
"strong" transition probabilities characteristic of many Markov chain models
was interpreted as a two—time—scale property through singular perturbation
modeling. This led to the concept of a reduced order "aggregate' Markov
chain. This enabled reduced order asymptotic series solutions to be obtained
for the steady state probability distribution, a problem frequently
encountered in queueing theorv. The aggregate model is then used to obtain
near optimal policies for controlled Markov chain problems. The resulting
optimization algorithms are decentralized in the sense that fast subsvstems

compute their controls '"locally" with the aggregate coordinating necessarw
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information between subsystems on a slow time scale. This avoids much of the

computational burden associated with hany controlled Markov chain problems.

The performance functions considered were the discounted cost and the average
cost per stage.

The potential areas for further research and applications are
numerous. Performance analysis of computer systems and numerical solutions to
complex stochastic control problems seem to be the most immediate application
areas. Research areas include incorporating dominant transient states [25]
into the two-time-scale model (5.1), decentralized control over a finite time
horizon, and Markov modeling techniques that result in the form (5.1). Many
new results are now starting to appear in these areas [25,57,61,62]. The
theoretical richness of this research area combined with numerous pocirtial
application fields should result in many more significant contributions to

Markov modeling and Markovian decision processes in the near future.




10.

11.

e -

127

REFERENCES

P. V. Kokotovic, W. R. Perkins, J. B. Cruz, Jr., and G. D'Ans, ''e-
Coupling Method for Near-Optimum Design of Large Scale Linear Systems,”
Proc. IEE, Vol. 116, pp. 184-206, 19

N. R. Sandell, Jr., P. Varaiya, and M. Athans, "A Survey of Decentralized
Control Methods for Large Scale Systems," Proc. Systems Engineering for
Power, ERDA Conf., Henniker, New Hampshire, August 17-22, 1975.

P. V. Kokotovic, R. E. 0'Malley, Jr., and P. Sannuti, "Singular Perturba-
tions and Order Reduction in Control Theory--An Overview,' Automatica,
Vol. 12, 1976, pp. 123-132,

M. Aoki, "Control of Large~Scale Dynamic Systems by Aggregation,' IEEE
Trans. on Automatic Control, Vol. AC-13, No. 3, June 1968, pp. 246-263.

M. Aoki, "Some Approximation Methods for Estimation of Control of Large
Scale Systems,'" IEEE Trans. on Automatic Control, Vol. AC-23, April 1978,
pp. 173-181.

P. V. Kokotovic and R. A. Yackel, "Singular Perturbation of Linear
Regulators: Basic Theorems," IEEE Trans. on Automatic Control, Vol. AC-17,
February 1972, pp. 29-37.

J. H. Chow and P. V. Kokotovic, "A Decomposition of Near-Optimum
Regulators for Systems with Slow and Fast Modes,”" I1EEE Trans. on Automatic
Control, Vol. AC-21, 1976, pp. 701-705.

R. E. 0'Malley, “~., Introduction to Singular Perturbations, Academic
Press, New York, 1974.

B. Avramovic, ''Subspace Iteration Approach to Time Scale Separation,"”
Proc. 18th IEEE Conf. on Decision and Control, Ft. Lauderdale, Florida,
December 1979, pp. 684-687.

P. V. Kokotovic, "A Riccati Equation for Blc-k-Diagonalization of Ill-
Conditioned Svstems,'" IEEE Trans. on Automatic Control, Vol. AC-20,
No. 6, December 1975, pp. 812-814.

R. G. Phillips, "Two-Time-Scale Discrete Svstems,” M.S5. thesis,
Coordinated Science Lab., Univ. of Illinois, Urbana, Report R-839,
Februarv 1979.

?2. V. Kokotovic, J. J. Allemong, J. R. Winkelman, and J. H. Chow,
"Singular Perturbations and Iterative Separation of Time Scales,"
Automatica, Vol. 16, No. 1, January 1980, pp. 23-34.




13.

14.
15.

16.

18.

:‘ 19.

20.

21.

23,

24,

27.

128

V. F. Butuzov, A. B. Vasil'eva, and M. V. Fedoryvk, "Asymptotic Methods
in the Theory of Ordinary Differential Equations,' Progress in Mathematics,
R. V. Gamkrelidze, editor, Plenum Press, New York, 19 , pp. 1-82.

R. A. Howard, Dynamic Programming and Markov Processes, Wiley, New York,
1960.

H. Kushner, Introduction to Stochastic Control, Holt, Rinehart, and
Winston, 1971.

H. Kushner, Probability Methods for Approximations in Stochastic Control
for Elliptic Equations, Academic Press, New York, 1976.

S. M. Ross, Applied Probability Models with Optimization Applicatioms,
Holden-Day, 1969.

L. Kleinrock, Queueing Systems, Vol. I and II, Wiley, New York, 1976.

R. Bellman, Dvnamic Programming, Princeton University Press, Princeton,
New Jersey, 1957.

R. Bellman, "A Markovian Decision Process,' J. Math. and Mech., Vol. 6,
1957, pp. 679-684.

P. J. Courtois, Decomposabilitvy: Queueing and Computer Svstem
Applications, Academic Press, New York, 1977.

e aas

F. Delebecque and J. P. Quadrat, "Contribution of Stochastic Control
Singular Perturbation Averaging Team Theories to an Example of Large-
Scale Systems: Management of Hydropower Production,'" IEEE Trans. on
Automatic Control, Vol. AC-23, No. 2, April 1978, po. 209-222.

2

A. A. Pervozvanskii and I. N. Smirnov, "Stationarv State Evaluation for )
a Complex System with Slowly Varying Couplings,'" translation ‘ronm
Kvbernetika, No. 4, July, August 1974, pp. 43-51.

V. G. Gaitsgori and A. A. Pervozvanskii, '"Aggregation of States in a I
Markov Chain with Weak Interactions,'" translation from K- cernetika,
No. 3, May~June, 1975, pp. 91-98. }

F. Delebecque and J. P. Quadrat, "Optimal Control of Markov Chains
Admitting Strong and Weak Interactions,” to appear in Automat:ica, 19

J. H. Chow, 'Separation of Time Scales in Linear Time-Iavariant Svstams,”
M.S. thesis, Coordinated Science Lab., Univ. of Illinois, Urbana. Redort 4
R-688, September 1975. ]
K. W. Chang, "Singular Perturbation of a General Bouncarv Value ®roblem,"”
SIAM J. Math. Anal., Vol. 3, 1977, pp. 520-526.




RS 2 AP A

-

PP Ty

T T

1

28.

29.

30.

31.

32

33.

34.

35.

36.

37.

38.

39.

40.

41.

- 129

J. Medanic, '"On the Geometric Properties and Invariant Manifolds of the
General Riccati Equation,'” submitted for publication.

G. W. Stewart, "Methods of Simultaneous Iteration for Calculating Eigen-
values of Matrices," in Topics in Numerical Amalysis II, J. J. H. Miller,
editor, Academic Press, New York, 1975, pp. 185-1 .

B. N. Parlett and W. G. Poole, Jr., "A Geometric Theory for the QR, LV,
and Power Iterations,” SIAM J. Numer. Anal., Vol. 10, No. 7, April 1973.

G. W. Stewart, "Simultaneous Iteration for Computing Invariant Subspaces
of Non-Hermittian Matrices,' Numer. Math., Vol. 25, 1976, pp. 123-136.

R. H. Bartels and G. W. Stewart, 'Solution of the Matrix Equation
AX+XB=C," Communications of the ACM, Vol. 15, No. 9, September 1972,
pp. 814-826.

M. Calovic, "Dynamic State-Space Models of Electric Power Systems,' Dept.
of Electrical and Mechanical Engineering, Univ. of Illinois, Urbana,
1971.

B. Avramovic, P. V. Kokotovic, J. R. Winkelman, and J. H. Chow, "Area
Decomposition for Electromechanical Models of Power Systems,'" Automatica,
November 1980.

K.-K. D. Young, P. V. Kokotovic, and V. I. Utkin, "A Singular Perturbation
Analysis of High Gain Feedback Systems,” IEEE Trans. on Automatic Control,
Vol. AC-22, 1977, pp. 931-938.

R. G. Phillips, "Decomposition of Time-Scales in Linear Systems Using
Dominant Eigenspace Power Iterations and Matched Asymptotic Expansions,"
Report DC-31, Coordinated Science Lab., Univ. of Illinois, Urbana, October
1979.

N. Narasimhamurthi and F. F. Wu, "On the Riccati Equation Arising from
the Study of Singularly Perturbed Systems," Proc. JACC, 1977, ppo. 1244-
1247, :

W. Wasow, Asvmptotic Expansions for Ordinarv Differential Equations,
Interscience Publishers, New York, 1975.

M. Caloviec, "Dynamic Stata-Space Models of Electric Power Svstems,' Dept.
of Electrical Engineering, Univ. of Illinois, Urbana, 1971.

J. H. Chow and P. V. Kokotovic, "Eigenvalue Placement in Two-Time-Scale
Systems," Proc. IFAC Svmp. on Large Scale Systems, 1976, pp. 321-326.

W. Hurewicz, Lectures omn Ordinarv Differential Equations, MIT Press,
Cambridge, Mass., 1973.




42,

43.

44.

45,

46.

47,

48.

49.

53.

...........

i 130

R. G. Phillips, "A Two-Stage Design of Linear Feedback Controls," IEEE
Trans. on Automatic Control, to appear December 1980.

R. G. Phillips, "Reduced Order Modeling and Design of Two-Time-Scale
Discrete Systems,'" Int. J. of Control, Vol. 31, No. 4, 1980, pp. 765-781.

D. P. Bertsekas, Dynamic Programming and Stochastic Control, Academic
Press, New York, Vol. 125, 1977.

C. H. Sauer and K. M. Chandy, "Approximate Solution of Queueing Models,"
Computer, April 1980, pp. 25-32.

W. J. Stewart, "A Comparison of Numerical Techamiques in Markov Modeling,'
Comm. ACM, Vol. 21, No. 2, February 1978, pp. 144-151.

A. A. Pervozvanskii and V. G. Gaitsgori, "Suboptimization, Decomposition,
and Aggregation,' Proc. of Seventh IFAC World Congress, Helsinki, Finland,
1978.

A. A. Pervozvanskii and V. G. Gaitsgori, Decomposition, Aggregation, and
Approximate Optimization (in Russian), Nauka, Moscow, 1979.

F. Delbecque and J. P. Quadrat, '"The Optimal Cost Expansion of Finite
Controls, Finite States, Markov Chains with Weak and Strong Interactions,"”
Mathematics of Operations Research, to appear.

S. H. Javid, "Multi-Time Methods in Order Reduction and Control of Discrete
Systems,'" Proc. of Thirteenth Asilomar Conf. on Circuits, Systems, and
Computers, Pacific Grove, Calif., November 5-7, 1979.

G. Blankenship, '"Singularly Perturbed Difference Equations in Optimal
Control Problems,” submitted to IEEE Trams. on Automatic Control.

H. J. Kushner and C.-H. Chen, "Decomposition of Systems Governed by
Markov Chaias,"” IEEE Trans. on Automatic Control, Vol. AC-19, No. 5,
October 1974, pp. 501-507.

H. J. Kushner and A. J. Kleinman, "Accelerated Procedures for the Solution
of Discrete Markov Control Problems," IEEE Trans. or Automatic Control,
Vol. AC-16, No. 2, April 1974, pp. 147-152.

D. J. White, "Dynamic Programming, Markov Chains, and the Method of
Successive Approximations," J. Math. Analysis and Applicatioms, Vol. 6,
1963, pp. 373-376.

P. Varaiya, "Optimal and Suboptimal Stationarv Controls for Markov Chains,"
IEEE Trans. on Automatic Control, Vol. AC-23, 1979, pp. 383-394.

J. L. Popvack, R. L. Brown, and C. C. White, III, "Discrete Versions of
an Algorithm Due to Varaiya," IEEE Trans. on Automatic Control. Vol. aAC-24,
No. 3, June 1979.




'n 57.
58.
59.

60.

61.

62.

..................................................

131

R. G. Phillips and P. V. Kokotovic, "A Singular Perturbation Approach to
Modeling and Control of Markov Chains,'" submitted for publicationm.

J. B. Cruz, Jr., Feedback Systems, McGraw-Hill Book Co., 1972.

R. E. Larson, "Research and Development of a Unitied Approach to
Operations Scheduling for Electric Power Under Uncertainty," Systems
Control, Inc., Technical Progress Report, June 1980.

B. N. Pshenichnyi, Necessary Conditions for an Extremum, Dekker, New York,
1971.

S. H. Javid, "Nested Optimization of Weakly Coupled Markov Chainms," Proc.
of the 18th Annual Allerton Conf. on Communication, Control, and Computing,

Univ. of Illinois, 1980.

J. P. Quadrat and M. Viot, "Product Form and Optimal Local Feedback for
Multiindex Markov Chain," Proc. of the 18th Annual Allerton Conf. on
Communication, Control, and Computing, Univ. of Illinois, 1980.




132

VITA

Randolph Gale Phillips was born in Reading, Pennsylvania on
November 17, 19547 He received the B.S. dggree in electrical engineering
from Villanova University, Villanova, Pennsylvania in 1976. Since the fall
of 1976 he has been a graduate student in the Department of Electrical
Engineering, University of Illinois, Urbana. In May of 1977 he became a
research assistant in the Decision and Control Laboratory of the Coordinated
Science Laboratory. In January of 1979 he received the M.S. degree in
electrical engineering. Since that time he has been a Ph.D. candidate working
on two~time-scale discrete systems, iterative techniques in reduced order
modeling of large scale systems, and singularly perturbed Markov chains.

Mr. Phillips is a member of I.E.E.E. and the honorary society of

Phi Kappa Phi.

o







